Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions

Bharath K. Sriperumbudur ${ }^{\star}$, Kenji Fukumizu ${ }^{\dagger}$, Arthur Gretton ${ }^{\ddagger}{ }^{\ddagger}$, , Gert R. G. Lanckriet* and Bernhard Schölkopf ${ }^{\star}$

* UC San Diego ${ }_{\ddagger}^{\dagger}$ The Institute of Statistical Mathematics
\ddagger CMU $\quad{ }^{\times}$MPI for Biological Cybernetics
NIPS 2009

RKHS Embeddings of Probability Measures

- Input space : X
- Feature space : \mathcal{H}
- Feature map: Φ

$$
\Phi: X \rightarrow \mathcal{H} \quad x \mapsto \Phi(x)
$$

Extension to probability measures:

$$
\mathbb{P} \mapsto \Phi(\mathbb{P})
$$

Distance between \mathbb{P} and \mathbb{Q} :

$$
\gamma(\mathbb{P}, \mathbb{Q})=\|\Phi(\mathbb{P})-\Phi(\mathbb{Q})\|_{\mathcal{H}}
$$

Applications

Two-sample problem:

- Given random samples $\left\{X_{1}, \ldots, X_{m}\right\}$ and $\left\{Y_{1}, \ldots, Y_{n}\right\}$ drawn i.i.d. from \mathbb{P} and \mathbb{Q}, respectively.
- Determine: are \mathbb{P} and \mathbb{Q} different?
- $\gamma(\mathbb{P}, \mathbb{Q})$: distance metric between \mathbb{P} and \mathbb{Q}.

$$
\begin{aligned}
& H_{0}: \mathbb{P}=\mathbb{Q} \\
& H_{1}: \mathbb{P} \neq \mathbb{Q}
\end{aligned} \equiv \begin{aligned}
& H_{0}: \gamma(\mathbb{P}, \mathbb{Q})=0 \\
& H_{1}: \gamma(\mathbb{P}, \mathbb{Q})>0
\end{aligned}
$$

- Test: Say H_{0} if $\widehat{\gamma}(\mathbb{P}, \mathbb{Q})<\varepsilon$. Otherwise say H_{1}.

Applications

- Hypothesis testing
- Testing for independence and conditional independence
- Goodness of fit test
- Density estimation : quality of the estimate, convergence results.
- Central limit theorems
- Information theory

Popular examples:

- Kullback-Leibler divergence
- Total-variation distance (metric)
- Hellinger distance
- χ^{2}-distance

The above examples are special instances of Csiszár's ϕ-divergence.

Integral Probability Metrics

- The integral probability metric [Müller, 1997] between \mathbb{P} and \mathbb{Q} is defined as

$$
\gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q})=\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{\mathbb{P}} f-\mathrm{E}_{\mathbb{Q}} f\right|
$$

- Many popular probability metrics can be obtained by appropriately choosing \mathcal{F}.
- Total variation distance : $\mathcal{F}=\left\{f:\|f\|_{\infty} \leq 1\right\}$.
- Wasserstein distance : $\mathcal{F}=\left\{f:\|f\|_{L} \leq 1\right\}$.
- Dudley metric : $\mathcal{F}=\left\{f:\|f\|_{L}+\|f\|_{\infty} \leq 1\right\}$.
- well-studied in statistics and probability theory.

\mathcal{F} is a Reproducing Kernel Hilbert Space

- \mathcal{H} : reproducing kernel Hilbert space (RKHS).
- k: measurable, bounded, real-valued reproducing kernel.
- \mathcal{F} : a unit ball in \mathcal{H}, i.e., $\mathcal{F}=\left\{f:\|f\|_{\mathcal{H}} \leq 1\right\}$.

Maximum mean discrepancy (MMD): [Gretton et al., 2007]

$$
\gamma_{k}(\mathbb{P}, \mathbb{Q}):=\gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q})=\left\|\mathrm{E}_{\mathbb{P}} k-\mathrm{E}_{\mathbb{Q}} k\right\|_{\mathcal{H}},
$$

where $\|.\|_{\mathcal{H}}$ represents the RKHS norm.
RKHS embedding of probability measures:

$$
\mathbb{P} \mapsto \mathrm{E}_{\mathbb{P}} k=: \Phi(\mathbb{P}) .
$$

Advantages

- Easy to compute γ_{k} unlike other \mathcal{F}.
- k is measurable and bounded: $\gamma_{k}\left(\mathbb{P}_{m}, \mathbb{Q}_{n}\right)$ is a $\sqrt{\frac{m n}{m+n}}$-consistent estimator of $\gamma_{k}(\mathbb{P}, \mathbb{Q})$ [Gretton et al., 2007].
- k is translation-invariant on \mathbb{R}^{d} : the rate is independent of d.
- Easy to handle structured domains like graphs and strings.

Characteristic Kernels

When is γ_{k} a metric?

$$
\gamma_{k}(\mathbb{P}, \mathbb{Q})=0 \Leftrightarrow \mathrm{E}_{\mathbb{P}} k=\mathrm{E}_{\mathbb{Q}} k \Leftrightarrow \mathbb{P}=\mathbb{Q}
$$

Define: k is characteristic if

$$
\mathrm{E}_{\mathbb{P}} k=\mathrm{E}_{\mathbb{Q}} k \Leftrightarrow \mathbb{P}=\mathbb{Q} .
$$

- Not all kernels are characteristic, e.g. $k(x, y)=x^{\top} y$.

$$
\gamma_{k}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{2} .
$$

- When is k characteristic?
[Gretton et al., 2007, Sriperumbudur et al., 2008,
Fukumizu et al., 2008, Fukumizu et al., 2009].

Outline

- Characterization of characteristic kernels (visit poster!)
- Choice of characteristic kernels
- Characteristic kernels and binary classification

Choice of Characteristic Kernels

Examples: Gaussian, Laplacian, $B_{2 /+1}$-splines, Poisson kernel, etc.
Suppose k is a Gaussian kernel, $k_{\sigma}(x, y)=e^{-\frac{\|x-y\|_{2}^{2}}{2 \sigma^{2}}}$.

- γ_{k} is a function of σ.
- So γ_{k} is a family of metrics. Which one do we use in practice?
- Note that $\gamma_{k} \rightarrow 0$ as $\sigma \rightarrow 0$ or $\sigma \rightarrow \infty$.
- Define

$$
\gamma(\mathbb{P}, \mathbb{Q})=\sup _{\sigma \in \mathbb{R}_{+}} \gamma_{k_{\sigma}}(\mathbb{P}, \mathbb{Q}) .
$$

Classes of Characteristic Kernels

Generalized MMD:

$$
\gamma(\mathbb{P}, \mathbb{Q}):=\sup _{k \in \mathcal{K}} \gamma_{k}(\mathbb{P}, \mathbb{Q}) .
$$

Examples for \mathcal{K} :

- $\mathcal{K}_{g}:=\left\{e^{-\sigma\|x-y\|_{2}^{2}}, x, y \in \mathbb{R}^{d}: \sigma \in \mathbb{R}_{+}\right\}$.
- $\mathcal{K}_{r b f}:=\left\{\int_{0}^{\infty} e^{-\lambda\|x-y\|_{2}^{2}} d \mu_{\sigma}(\lambda), x, y \in \mathbb{R}^{d}, \mu_{\sigma} \in \mathscr{M}^{+}: \sigma \in \Sigma \subset\right.$ $\left.\mathbb{R}^{d}\right\}$, where \mathscr{M}^{+}is the set of all finite nonnegative Borel measures, μ_{σ} on \mathbb{R}_{+}that is not concentrated at zero.
- $\mathcal{K}_{\text {lin }}:=\left\{k_{\lambda}=\sum_{i=1}^{\prime} \lambda_{i} k_{i} \mid k_{\lambda}\right.$ is pd, $\left.\sum_{i=1}^{\prime} \lambda_{i}=1\right\}$.
- $\mathcal{K}_{\text {con }}:=\left\{k_{\lambda}=\sum_{i=1}^{\prime} \lambda_{i} k_{i} \mid \lambda_{i} \geq 0, \sum_{i=1}^{l} \lambda_{i}=1\right\}$.

Computation

$$
\begin{gathered}
\gamma(\mathbb{P}, \mathbb{Q})=\sup _{k \in \mathcal{K}}\left[\iint k(x, y) d \mathbb{P}(x) d \mathbb{P}(y)+\iint k(x, y) d \mathbb{Q}(x) d \mathbb{Q}(y)\right. \\
\left.-2 \iint k(x, y) d \mathbb{P}(x) d \mathbb{Q}(y)\right]^{1 / 2}
\end{gathered}
$$

- Suppose $\left\{X_{i}\right\}_{i=1}^{m} \stackrel{i . i . d .}{\sim} \mathbb{P}$ and $\left\{Y_{i}\right\}_{i=1}^{n} \stackrel{i . i . d .}{\sim} \mathbb{Q}$.
- Let $\mathbb{P}_{m}:=\frac{1}{m} \sum_{i=1}^{m} \delta_{X_{i}}$ and $\mathbb{Q}_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{Y_{i}}$, where δ_{x} represents the Dirac measure at x.
- The empirical estimate of $\gamma(\mathbb{P}, \mathbb{Q})$:

$$
\gamma\left(\mathbb{P}_{m}, \mathbb{Q}_{n}\right)=\sup _{k \in \mathcal{K}}\left[\sum_{i, j=1}^{m} \frac{k\left(X_{i}, X_{j}\right)}{m^{2}}+\sum_{i, j=1}^{n} \frac{k\left(Y_{i}, Y_{j}\right)}{n^{2}}-2 \sum_{i, j=1}^{m, n} \frac{k\left(X_{i}, Y_{j}\right)}{m n}\right]^{1 / 2}
$$

Question

- When is γ a metric?
- Answer: If any $k \in \mathcal{K}$ is characteristic, then γ is a metric.

Question

- For a fixed k that is measurable and bounded, [Gretton et al., 2007] have shown that

$$
\left|\gamma_{k}\left(\mathbb{P}_{m}, \mathbb{Q}_{n}\right)-\gamma_{k}(\mathbb{P}, \mathbb{Q})\right|=O\left(\sqrt{\frac{m+n}{m n}}\right)
$$

- When does $\gamma\left(\mathbb{P}_{m}, \mathbb{Q}_{n}\right) \xrightarrow{\text { a.s. }} \gamma(\mathbb{P}, \mathbb{Q})$? What is the rate of convergence?

Statistical Consistency: Result

Theorem

For any \mathcal{K} and $\nu:=\sup _{k \in \mathcal{K}, x \in M} k(x, x)<\infty$, with probability at least $1-\delta$, the following holds:

$$
\begin{aligned}
\left|\gamma\left(\mathbb{P}_{m}, \mathbb{Q}_{n}\right)-\gamma(\mathbb{P}, \mathbb{Q})\right| \leq & \sqrt{\frac{8 U_{m}(\mathcal{K})}{m}}+\sqrt{\frac{8 U_{n}(\mathcal{K})}{n}} \\
& +\left(\sqrt{8 \nu}+\sqrt{36 \nu \log \frac{4}{\delta}}\right) \sqrt{\frac{m+n}{m n}}
\end{aligned}
$$

where

$$
U_{m}(\mathcal{K}):=\mathbb{E}\left[\left.\sup _{k \in \mathcal{K}}\left|\frac{1}{m} \sum_{i<j}^{m} \rho_{i} \rho_{j} k\left(X_{i}, X_{j}\right)\right| \right\rvert\, X_{1}, \ldots, X_{m}\right],
$$

is the Rademacher chaos complexity and ρ_{i} are Rademacher random variables.

Statistical Consistency: Result

Proposition
Suppose \mathcal{K} is a VC-subgraph class. Then

$$
\left|\gamma\left(\mathbb{P}_{m}, \mathbb{Q}_{n}\right)-\gamma(\mathbb{P}, \mathbb{Q})\right|=O\left(\sqrt{\frac{m+n}{m n}}\right)
$$

In addition, $\gamma\left(\mathbb{P}_{m}, \mathbb{Q}_{n}\right) \xrightarrow{\text { a.s. }} \gamma(\mathbb{P}, \mathbb{Q})$.
Examples: [Ying and Campbell, 2009, Srebro and Ben-David, 2006]

- $\mathcal{K}_{g}, \mathcal{K}_{\text {rbf }}, \mathcal{K}_{\text {lin }}, \mathcal{K}_{\text {con }}$, etc.

The Two-Sample Problem

- Given : $\left\{X_{1}, \ldots, X_{m}\right\} \stackrel{\text { i.i.d. }}{\sim} \mathbb{P}$ and $\left\{Y_{1}, \ldots, Y_{n}\right\} \stackrel{\text { i.i.d. }}{\sim} \mathbb{Q}$.
- Determine: are \mathbb{P} and \mathbb{Q} different?
- $\gamma(\mathbb{P}, \mathbb{Q})$: distance metric between \mathbb{P} and \mathbb{Q}.

$$
\begin{aligned}
& H_{0}: \mathbb{P}=\mathbb{Q} \\
& H_{1}: \mathbb{P} \neq \mathbb{Q}
\end{aligned} \equiv \begin{aligned}
& H_{0}: \gamma(\mathbb{P}, \mathbb{Q})=0 \\
& H_{1}: \gamma(\mathbb{P}, \mathbb{Q})>0
\end{aligned}
$$

- Test: Say H_{0} if $\widehat{\gamma}(\mathbb{P}, \mathbb{Q})<\varepsilon$. Otherwise say H_{1}.
- Good Test: Low Type-II error for user-defined Type-I error.

Experiments

- $q=\mathcal{N}\left(0, \sigma_{q}^{2}\right)$.
- $p(x)=q(x)(1+\sin \nu x)$.

$\nu=7.5$
- $k(x, y)=\exp \left(-(x-y)^{2} / \sigma\right)$.
- Test statistics: $\gamma\left(\mathbb{P}_{m}, \mathbb{Q}_{m}\right)$ and $\gamma_{k}\left(\mathbb{P}_{m}, \mathbb{Q}_{m}\right)$ for various σ.

Experiments

$$
\gamma(\mathbb{P}, \mathbb{Q})
$$

Experiments

Outline

- Characterization of characteristic kernels (visit poster!)
- Choice of characteristic kernels
- Characteristic kernels and binary classification

γ_{k} and Parzen Window Classifier

Let

- RKHS $(\mathcal{H}, k): k$ measurable and bounded.
- $\mathcal{F}_{k}=\left\{f:\|f\|_{\mathcal{H}} \leq 1\right\}$.
- \mathbb{P}, \mathbb{Q} : class-conditional distributions
- $R_{\mathcal{F}_{k}}$: Bayes risk of a classifier in \mathcal{F}_{k}.

Then,

$$
\gamma_{k}(\mathbb{P}, \mathbb{Q})=-R_{\mathcal{F}_{k}} .
$$

- The MMD between class conditionals \mathbb{P} and \mathbb{Q} is negative of the Bayes risk associated with a Parzen window classifier.
- Characteristic k is important.

γ_{k} and Support Vector Machine

- RKHS $(\mathcal{H}, k): k$ measurable and bounded.
- $f_{\text {svm }}$ be the solution to the program,

$$
\begin{aligned}
\inf _{f \in \mathcal{H}} & \|f\|_{\mathcal{H}} \\
\text { s.t. } & Y_{i} f\left(X_{i}\right) \geq 1, \forall i
\end{aligned}
$$

If k is characteristic, then

$$
\frac{1}{\left\|f_{s v m}\right\|_{\mathcal{H}}} \leq \frac{1}{2} \gamma_{k}\left(\mathbb{P}_{m}, \mathbb{Q}_{n}\right) .
$$

Achievability of Bayes Risk

- \mathcal{G}_{\star} : set of all real-valued measurable functions on M.
- (\mathcal{H}, k) : RKHS with measurable and bounded k.
- Achievability of Bayes risk:

$$
\inf _{g \in \mathcal{H}} R(g)=\inf _{g \in \mathcal{G}_{*}} R(g) .
$$

Under some technical conditions,

- $(* *) \Rightarrow k$ is characteristic.
- Suppose $1 \in \mathcal{H}$. k is characteristic \Rightarrow (**).

Summary

- Characteristic kernel
- A class of kernels that characterize the probability measure associated with a random variable.
- MMD is a metric.
- How to choose characteristic kernels in practice?
- Generalized MMD.
- Performs better than MMD in a two-sample test.
- Characteristic kernels are important in binary classification.
- Parzen window classifier and hard-margin SVM.
- Achievability of Bayes risk.

Thank You

References

- Fukumizu, K., Gretton, A., Sun, X., and Schölkopf, B. (2008).

Kernel measures of conditional dependence.
In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors, Advances in Neural Information Processing Systems 20, pages 489-496, Cambridge, MA. MIT Press.

- Fukumizu, K., Sriperumbudur, B. K., Gretton, A., and Schölkopf, B. (2009).

Characteristic kernels on groups and semigroups.
In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 21, pages 473-480.

- Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., and Smola, A. (2007).

A kernel method for the two sample problem.
In Schölkopf, B., Platt, J., and Hoffman, T., editors, Advances in Neural Information Processing Systems 19, pages 513-520. MIT Press.

- Müller, A. (1997).

Integral probability metrics and their generating classes of functions.
Advances in Applied Probability, 29:429-443.

- Srebro, N. and Ben-David, S. (2006).

Learning bounds for support vector machines with learned kernels.
In Lugosi, G. and Simon, H. U., editors, Proc. of the $19^{\text {th }}$ Annual Conference on Learning Theory, pages 169-183.

- Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Lanckriet, G. R. G., and Schölkopf, B. (2008).

Injective Hilbert space embeddings of probability measures.
In Servedio, R. and Zhang, T., editors, Proc. of the $21^{\text {st }}$ Annual Conference on Learning Theory, pages 111-122.

- Ying, Y. and Campbell, C. (2009).

Generalization bounds for learning the kernel.
In Proc. of the $22^{\text {nd }}$ Annual Conference on Learning Theory.

