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RKHS Embeddings of Probability Measures

◮ Input space : X

◮ Feature space : H

◮ Feature map : Φ

Φ : X → H x 7→ Φ(x).

Extension to probability measures:

P 7→ Φ(P)

Distance between P and Q:

γ(P, Q) = ‖Φ(P) − Φ(Q)‖H.



Applications

Two-sample problem:

◮ Given random samples {X1, . . . ,Xm} and {Y1, . . . ,Yn} drawn i.i.d.
from P and Q, respectively.

◮ Determine: are P and Q different?

◮ γ(P, Q) : distance metric between P and Q.

H0 : P = Q H0 : γ(P, Q) = 0
≡

H1 : P 6= Q H1 : γ(P, Q) > 0

◮ Test: Say H0 if γ̂(P, Q) < ε. Otherwise say H1.



Applications

◮ Hypothesis testing

◮ Testing for independence and conditional independence

◮ Goodness of fit test

◮ Density estimation : quality of the estimate, convergence results.

◮ Central limit theorems

◮ Information theory

Popular examples:

◮ Kullback-Leibler divergence

◮ Total-variation distance (metric)

◮ Hellinger distance

◮ χ2-distance

The above examples are special instances of Csiszár’s φ-divergence.



Integral Probability Metrics

◮ The integral probability metric [Müller, 1997] between P and Q is
defined as

γF(P, Q) = sup
f ∈F

|EPf − EQf | .

◮ Many popular probability metrics can be obtained by appropriately
choosing F.

◮ Total variation distance : F = {f : ‖f ‖∞ ≤ 1}.

◮ Wasserstein distance : F = {f : ‖f ‖L ≤ 1}.

◮ Dudley metric : F = {f : ‖f ‖L + ‖f ‖∞ ≤ 1}.

◮ well-studied in statistics and probability theory.



F is a Reproducing Kernel Hilbert Space

◮ H : reproducing kernel Hilbert space (RKHS).

◮ k : measurable, bounded, real-valued reproducing kernel.

◮ F : a unit ball in H, i.e., F = {f : ‖f ‖H ≤ 1}.

Maximum mean discrepancy (MMD): [Gretton et al., 2007]

γk(P, Q) := γF(P, Q) = ‖EPk − EQk‖
H

,

where ‖.‖H represents the RKHS norm.

RKHS embedding of probability measures:

P 7→ EPk =: Φ(P).



Advantages

◮ Easy to compute γk unlike other F.

◮ k is measurable and bounded: γk(Pm, Qn) is a
√

mn
m+n

-consistent

estimator of γk(P, Q) [Gretton et al., 2007].

◮ k is translation-invariant on Rd : the rate is independent of d .

◮ Easy to handle structured domains like graphs and strings.



Characteristic Kernels

When is γk a metric?

γk(P, Q) = 0 ⇔ EPk = EQk ⇔ P = Q.

Define: k is characteristic if

EPk = EQk ⇔ P = Q.

◮ Not all kernels are characteristic, e.g. k(x , y) = xT y .

γk(P, Q) = ‖µP − µQ‖2.

◮ When is k characteristic?
[Gretton et al., 2007, Sriperumbudur et al., 2008,
Fukumizu et al., 2008, Fukumizu et al., 2009].



Outline

◮ Characterization of characteristic kernels (visit poster!)

◮ Choice of characteristic kernels

◮ Characteristic kernels and binary classification



Choice of Characteristic Kernels

Examples: Gaussian, Laplacian, B2l+1-splines, Poisson kernel, etc.

Suppose k is a Gaussian kernel, kσ(x , y) = e−
‖x−y‖2

2
2σ

2 .

◮ γk is a function of σ.

◮ So γk is a family of metrics. Which one do we use in practice?

◮ Note that γk → 0 as σ → 0 or σ → ∞.

◮ Define
γ(P, Q) = sup

σ∈R+

γkσ
(P, Q).



Classes of Characteristic Kernels

Generalized MMD:
γ(P, Q) := sup

k∈K

γk(P, Q).

Examples for K :

◮ Kg := {e−σ‖x−y‖2
2 , x , y ∈ Rd : σ ∈ R+}.

◮ Krbf := {
∫∞

0
e−λ‖x−y‖2

2 dµσ(λ), x , y ∈ Rd , µσ ∈ M + : σ ∈ Σ ⊂
Rd}, where M + is the set of all finite nonnegative Borel measures,
µσ on R+ that is not concentrated at zero.

◮ Klin := {kλ =
∑l

i=1 λiki |kλ is pd,
∑l

i=1 λi = 1}.

◮ Kcon := {kλ =
∑l

i=1 λiki |λi ≥ 0,
∑l

i=1 λi = 1}.



Computation

◮

γ(P, Q) = sup
k∈K

[ ∫∫
k(x , y) dP(x) dP(y) +

∫∫
k(x , y) dQ(x) dQ(y)

−2

∫∫
k(x , y) dP(x) dQ(y)

]1/2

.

◮ Suppose {Xi}m
i=1

i.i.d.∼ P and {Yi}n
i=1

i.i.d.∼ Q.

◮ Let Pm := 1
m

∑m
i=1 δXi

and Qn := 1
n

∑n
i=1 δYi

, where δx represents
the Dirac measure at x .

◮ The empirical estimate of γ(P, Q):

γ(Pm, Qn) = sup
k∈K




m∑

i,j=1

k(Xi ,Xj)

m2
+

n∑

i,j=1

k(Yi ,Yj)

n2
− 2

m,n∑

i,j=1

k(Xi ,Yj)

mn




1/2

.



Question

◮ When is γ a metric?

◮ Answer: If any k ∈ K is characteristic, then γ is a metric.



Question

◮ For a fixed k that is measurable and bounded, [Gretton et al., 2007]
have shown that

|γk(Pm, Qn) − γk(P, Q)| = O

(√
m + n

mn

)
.

◮ When does γ(Pm, Qn)
a.s.→ γ(P, Q)? What is the rate of convergence?



Statistical Consistency: Result

Theorem
For any K and ν := supk∈K,x∈M k(x , x) < ∞, with probability at least
1 − δ, the following holds:

|γ(Pm, Qn) − γ(P, Q)| ≤
√

8Um(K)

m
+

√
8Un(K)

n

+

(
√

8ν +

√
36ν log

4

δ

)√
m + n

mn
,

where

Um(K) := E



 sup
k∈K

∣∣∣∣∣∣
1

m

m∑

i<j

ρiρjk(Xi ,Xj)

∣∣∣∣∣∣

∣∣∣X1, . . . ,Xm



 ,

is the Rademacher chaos complexity and ρi are Rademacher random
variables.



Statistical Consistency: Result

Proposition

Suppose K is a VC-subgraph class. Then

|γ(Pm, Qn) − γ(P, Q)| = O

(√
m + n

mn

)
.

In addition, γ(Pm, Qn)
a.s.→ γ(P, Q).

Examples: [Ying and Campbell, 2009, Srebro and Ben-David, 2006]

◮ Kg , Krbf , Klin, Kcon, etc.



The Two-Sample Problem

◮ Given : {X1, . . . ,Xm} i.i.d.∼ P and {Y1, . . . ,Yn} i.i.d.∼ Q.

◮ Determine: are P and Q different?

◮ γ(P, Q) : distance metric between P and Q.

H0 : P = Q H0 : γ(P, Q) = 0
≡

H1 : P 6= Q H1 : γ(P, Q) > 0

◮ Test: Say H0 if γ̂(P, Q) < ε. Otherwise say H1.

◮ Good Test: Low Type-II error for user-defined Type-I error.



Experiments

◮ q = N (0, σ2
q).

◮ p(x) = q(x)(1 + sin νx).
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◮ k(x , y) = exp(−(x − y)2/σ).

◮ Test statistics: γ(Pm, Qm) and γk(Pm, Qm) for various σ.



Experiments

γ(P, Q)
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Experiments

γk(P, Q)
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Outline

◮ Characterization of characteristic kernels (visit poster!)

◮ Choice of characteristic kernels

◮ Characteristic kernels and binary classification



γk and Parzen Window Classifier

Let

◮ RKHS (H, k): k measurable and bounded.

◮ Fk = {f : ‖f ‖H ≤ 1}.
◮ P, Q : class-conditional distributions

◮ RFk
: Bayes risk of a classifier in Fk .

Then,
γk(P, Q) = −RFk

.

◮ The MMD between class conditionals P and Q is negative of the
Bayes risk associated with a Parzen window classifier.

◮ Characteristic k is important.



γk and Support Vector Machine

◮ RKHS (H, k): k measurable and bounded.

◮ fsvm be the solution to the program,

inf
f ∈H

‖f ‖H

s.t. Yi f (Xi ) ≥ 1, ∀ i .

If k is characteristic, then

1

‖fsvm‖H

≤ 1

2
γk(Pm, Qn).



Achievability of Bayes Risk

◮ G⋆ : set of all real-valued measurable functions on M.

◮ (H, k) : RKHS with measurable and bounded k.

◮ Achievability of Bayes risk :

inf
g∈H

R(g) = inf
g∈G⋆

R(g). (⋆⋆)

Under some technical conditions,

◮ (⋆⋆) ⇒ k is characteristic.

◮ Suppose 1 ∈ H. k is characteristic ⇒ (⋆⋆).



Summary

◮ Characteristic kernel

◮ A class of kernels that characterize the probability measure

associated with a random variable.

◮ MMD is a metric.

◮ How to choose characteristic kernels in practice?

◮ Generalized MMD.

◮ Performs better than MMD in a two-sample test.

◮ Characteristic kernels are important in binary classification.

◮ Parzen window classifier and hard-margin SVM.

◮ Achievability of Bayes risk.



Thank You
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