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RKHS Embeddings of Probability Measures

» Input space : X
» Feature space : H

» Feature map : ¢
O: X —>H x — ®(x).
Extension to probability measures:
P— o(P)
Distance between P and QQ:

(P, Q) = [[®(P) — &(Q)]|5.



Applications

Two-sample problem:

» Given random samples {X1,..., X} and {Y7,...,Y,} drawn i.i.d.
from P and Q, respectively.

» Determine: are P and Q different?

» v(P,Q) : distance metric between P and Q.

Ho :P=Q Ho : v(P,Q) =0

Hlip#Q Hli’)/(P,@)>0

» Test: Say Hp if 7(P,Q) < . Otherwise say Hj.



Applications

» Hypothesis testing

» Testing for independence and conditional independence

» Goodness of fit test
» Density estimation : quality of the estimate, convergence results.
» Central limit theorems
» [nformation theory
Popular examples:
» Kullback-Leibler divergence
» Total-variation distance (metric)

» Hellinger distance

> y2-distance

The above examples are special instances of Csiszar’s ¢-divergence.



Integral Probability Metrics

» The integral probability metric [Miiller, 1997] between P and Q is
defined as

’yg(P, Q) — Sup |Epf — EQf‘ .
fedF

» Many popular probability metrics can be obtained by appropriately
choosing &.

» Total variation distance : F = {f : ||f||cc < 1}.
» Wasserstein distance : F = {f : ||f||. < 1}.
» Dudley metric: F = {f : ||f||. + ||f||lcc <1}

» well-studied in statistics and probability theory.



F is a Reproducing Kernel Hilbert Space

» J : reproducing kernel Hilbert space (RKHS).

» k : measurable, bounded, real-valued reproducing kernel.

> F :aunit ball in I, ie.,, F={f:|f]s <1}.

Maximum mean discrepancy (MMD): [Gretton et al., 2007]

/yk(IP)7 Q) = 79(P7 @) — HEPk — EQka}w

where ||.||5¢ represents the RKHS norm.

RKHS embedding of probability measures:

P — Epk =: ®(P).
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>
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Advantages

Easy to compute v, unlike other J.

mn

-consistent
m-+n

k is measurable and bounded: (P, Q,) is a
estimator of v, (P, Q) [Gretton et al., 2007].

k is translation-invariant on R9: the rate is independent of d.

Easy to handle structured domains like graphs and strings.



Characteristic Kernels

When is v, a metric?
% (P,Q) =0 & Epk = Egk & P = Q.
Define: k is characteristic if

Epk = Egk < P = Q.

» Not all kernels are characteristic, e.g. k(x,y) = x"y.
(P, Q) = |lpp — poll2.
» When is k characteristic?

[Gretton et al., 2007, Sriperumbudur et al., 2008,
Fukumizu et al., 2008, Fukumizu et al., 2009].



Outline

» Characterization of characteristic kernels (visit poster!)
» Choice of characteristic kernels

» Characteristic kernels and binary classification



Choice of Characteristic Kernels

Examples: Gaussian, Laplacian, By/y1-splines, Poisson kernel, etc.

Ix—yl3
Suppose k is a Gaussian kernel, k,(x,y) = e~ 202 ;

> v, is a function of o.

> So vk is a family of metrics. Which one do we use in practice?
» Note that v - 0as o — 0 or 0 — oc.

» Define
W(Pa Q) = Sup Yk, (Pa Q)

O'ER+



Classes of Characteristic Kernels

Generalized MMD:

’Y(Pv @) .— Sup ’Yk(IP)a Q)
keX

Examples for X :

» Kp = {e_"”X_y”%, x,y €RY: 0 c R}

2
> K,pr 1= {fooo e AMx=vyll die(N),x,y ER, s € M+ : 0 €L C
R}, where .# " is the set of all finite nonnegative Borel measures,
L on Ry that is not concentrated at zero.

> Kiin := {kxn = S0, Nikilknis pd, S°1_  A\; = 1}.

> fKCO” L= {k)\ — Zf’:l )\,'k,")\,' > 0, Zf’:l )\,' = 1}.



Computation

(P, Q) = sup / / k(x,y) dP(x) dP(y / / (x,y) dQ(x) dQ(y)
-2 [[ kxy) dpe da0)]

Suppose { X}, "I P and {Yi} i, N Q.

Let P, := = > x, and Q, := 137 | &y, where §, represents
the Dirac measure at x.

The empirical estimate of (P, Q):

) ~1/2

k(XL X)) e k(YY) o~ k(X;, Y
P..Q,) = 7N 4 9 » 1J
(B, Qn) = sup ; = +,-JZ::1 - ; -




Question

» When is v a metric?

» Answer: If any k € X is characteristic, then v is a metric.



Question

» For a fixed k that is measurable and bounded, [Gretton et al., 2007]
have shown that

mn

Yk (Pm, Qn) — % (P, Q)| = O ( mT n) .

» When does (P, Q,) 23 ~(P,Q)? What is the rate of convergence?



Statistical Consistency: Result

Theorem

For any X and v := sup,cq v em k(X, x) < oo, with probability at least
1 — 90, the following holds:

Y(Pm, Qn) — (P, Q)| < \/8Un;7(9<)+\/8un(3<)

n

4
+<\/8y+\/36ulog> m+n7

) mn

where

1 m
Um(jc) =K sup _Zplpjk(XHXI) ’Xlw"?Xm )
kexk | M i<

Is the Rademacher chaos complexity and p; are Rademacher random
variables.



Statistical Consistency: Result

Proposition
Suppose X is a VVC-subgraph class. Then

VY(Pm,Qn) —v(P,Q)] = O ( mm+nn> |

In addition, v(P,,, Q,) 23 (P, Q).

Examples: [Ying and Campbell, 2009, Srebro and Ben-David, 2006]
> :ng j<:I’bf-v :K:lin; Kcon, etc.



>

The Two-Sample Problem

Given: {X1,.... Xm} "~ Pand {V4,...,Y,} " Q.

Determine: are P and Q different?

v(P, Q) : distance metric between P and Q.
H()ZIP):@ H()I’}/(P,Q):O

Hi:P#Q Hy : v(P,Q) >0

Test: Say Hp if (P, Q) < . Otherwise say Hs.

Good Test: Low Type-ll error for user-defined Type-| error.



Experiments

» g =N(0,07).

> p(x) = q(x)(1+ sinvx).

v =20 v =2 v=17.5

> k(x,y) = exp(—(x — y)?/0).

» Test statistics: Y(Pm, Qm) and Vi (Pm, Q) for various o.



Experiments
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Outline

» Characterization of characteristic kernels (visit poster!)
» Choice of characteristic kernels

» Characteristic kernels and binary classification



v« and Parzen Window Classifier

Let
» RKHS (3, k): k measurable and bounded.
> T =A{f:[[fllsc <1}
» P, Q : class-conditional distributions

» Ry, : Bayes risk of a classifier in Jy.

Then,
’Yk(IP)a Q) — _RTk-

» The MMD between class conditionals P and Q is negative of the
Bayes risk associated with a Parzen window classifier.

» Characteristic k is important.



v« and Support Vector Machine

» RKHS (3, k): k measurable and bounded.

» fs,m be the solution to the program,
inf  [[f]|ac
feH

st Yif(X;)>1,Vi.

If k is characteristic, then

1 1
S _’Yk(IP)m, @n)

fsvmllac



Achievability of Bayes Risk

» G, : set of all real-valued measurable functions on M.

» (H, k) : RKHS with measurable and bounded k.

» Achievability of Bayes risk :

inf R(g) = inf R(g).
Jinf (g) nf (&)

Under some technical conditions,

> (xx) = k is characteristic.

» Suppose 1 € H. k is characteristic = (*x).

(%)



Summary

» Characteristic kernel

» A class of kernels that characterize the probability measure
associated with a random variable.

» MMD is a metric.

» How to choose characteristic kernels in practice?

» Generalized MMD.

» Performs better than MMD in a two-sample test.

» Characteristic kernels are important in binary classification.

» Parzen window classifier and hard-margin SVM.

» Achievability of Bayes risk.



Thank You
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