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Generalized Eigenvalue Problem

Given a matrix pair, (A,B), find a pair (λ, x) such that

Ax = λBx,

where A,B ∈ C
n×n, C

n ∋ x 6= 0 and λ ∈ C.

Variational formulation:

λmax(A,B) = max
x

xTAx

s.t. xTBx = 1, (1)

where x ∈ R
n, A ∈ S

n and B ∈ S
n
++.

◮ Popular in multivariate statistics and machine learning.

◮ Classification : Fisher discriminant analysis
◮ Dimensionality reduction : Principal component analysis, Canonical

correlation analysis
◮ Clustering : Spectral clustering



Applications

◮ Fisher Discriminant Analysis (FDA)

◮ A = (µ1 − µ2)(µ1 − µ2)
T is the between-cluster variance.

◮ B = Σ1 + Σ2 is the within-cluster variance.

◮ Principal Component Analysis (PCA)

◮ A = Σ is the covariance matrix.

◮ B is the identity matrix.

◮ Canonical Correlation Analysis (CCA)

◮ A =

(

0 Sxy

Syx 0

)

.

◮ B =

(

Sxx 0

0 Syy

)

, where S.. represents the cross-covariance

matrix.



Why Sparsity?

◮ Usually, the solutions of FDA, PCA and CCA are not sparse.

◮ This often makes it difficult to interpret the results.

◮ PCA/CCA: For better interpretability, few relevant features are
required that explain as much variance as possible.

◮ Applications: bio-informatics, finance, document translation etc.

◮ FDA: feature selection aids generalization performance by promoting
sparse solutions.

◮ Sparse representation ⇒ better interpretation, better generalization
and reduced computational costs.



Sparse Generalized Eigenvalue Problem

◮ The variational formulation for the sparse generalized eigenvalue
problem is given by

max
x

xTAx

s.t. xTBx = 1

‖x‖0 ≤ k, (2)

where 1 ≤ k ≤ n and ‖x‖0 :=
∑n

i=1 1{|xi |6=0} is the cardinality of x.

◮ (2) is non-convex, NP-hard and therefore intractable.

◮ Usually, the ℓ1-norm approximation is used for the cardinality
constraint, i.e., replace ‖x‖0 ≤ k by ‖x‖1 ≤ k.

◮ The problem is still computationally hard.



Sparse Generalized Eigenvalue Problem
◮ (2) can be written as

max
x

xTAx − ρ̃ ||x||0

s.t. xTBx ≤ 1, (3)

where ρ̃ ≥ 0.

◮ Approximate ||x||0 by ‖x‖ε :=
∑n

i=1
log(1+|xi |ε

−1)
log(1+ε−1) for sufficiently

small ε > 0 as

‖x‖0 = lim
ε→0

n
∑

i=1

log(1 + |xi |ε
−1)

log(1 + ε−1)
. (4)

◮ The approximation, ‖x‖ε can be interpreted as defining a limiting
Student’s t-distribution prior over x (leading to an improper prior)
given by

p(x) ∝
n
∏

i=1

1

|xi | + ε

and computing its negative log-likelihood.



Approximation to ||x||0
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Approximation to ‖x‖0

As ε → 0, ‖x‖ε → ‖x‖0 and as ε → ∞, ‖x‖ε → ‖x‖1.



Sparse Generalized Eigenvalue Problem
◮ (3) reduces to the approximate program,

max
x

xTAx − ρε

n
∑

i=1

log(|xi | + ε)

s.t. xTBx ≤ 1, (5)

where ρε := ρ̃
log(1+ε−1) .

◮ The task reduces to solving the approximate program in (5) with a
small value of ε.

◮ (5) can be written as

min
x

τ ||x||2 −

(

xT (A + τ I)x − ρ

n
∑

i=1

log(|xi | + ε)

)

s.t. xTBx ≤ 1, (6)

where τ ≥ max(0,−λmin(A)).

◮ The objective in (6) is a difference of two convex functions.



Majorization-Minimization (MM)
◮ Suppose we want to minimize f over Ω ⊂ R

n. Construct a
majorization function, g over Ω × Ω such that

f (x) ≤ g(x , y), ∀ x , y ∈ Ω and f (x) = g(x , x), ∀ x ∈ Ω.

◮ The majorization algorithm corresponding to g updates x at
iteration l by

x (l+1) ∈ arg min
x∈Ω

g(x , x (l)), (7)

unless we already have

x (l) ∈ arg min
x∈Ω

g(x , x (l)),

in which case the algorithm stops.

◮ f (x (l+1)) ≤ g(x (l+1), x (l)) ≤ g(x (l), x (l)) = f (x (l)).

◮ MM algorithms can be thought of as a generalization of the EM
algorithm.



Sparse Generalized Eigenvalue Algorithm
Proposition
The following function

g(x, y) = τ‖x‖2
2 − 2xT (A + τ In)y + yT (A + τ In)y + ρε

n
∑

i=1

log(ε + |yi |)

+ρε

n
∑

i=1

|xi | − |yi |

|yi | + ε
, (8)

majorizes the objective function in (6).

By following the minimization step in (7) with g as in (8), the sparse
GEV algorithm is obtained as

x(l+1) = arg min
x

τ‖x‖2
2 − 2xT (A + τ In)x

(l) + ρε

n
∑

i=1

|xi |

|x
(l)
i | + ε

s.t. xTBx ≤ 1, (9)

which is a sequence of quadratically constrained quadratic programs
(QCQPs).



Sparse Generalized Eigenvalue Program
◮ (9) can also be written as

x(l+1) = arg min
x

‖x − (τ−1A + In)x
(l)‖2

2 +
ρ

τ
‖W(l)x‖1

s.t. xTBx ≤ 1, (10)

where w
(l)
i := 1

|x
(l)
i |+ε

, w(l) := (w
(l)
1 , . . . ,w

(l)
n ) and

W(l) := diag(w(l)).

◮ (10) is very similar to LASSO [Tibshirani, 1996] except for the
weighted ℓ1-norm penalty and the quadratic constraint.

◮ When A � 0, B = In and τ = 0, (9) reduces to a very simple
iterative rule:

x
(l+1)
i =

[

∣

∣(Ax(l))i
∣

∣− ρε

2 w
(l)
i

]

+
sign((Ax(l))i )

√

∑n
i=1

[

∣

∣(Ax(l))i
∣

∣− ρε

2 w
(l)
i

]2

+

, ∀ i , (11)

where [a]+ := max(0, a), which we call as DC-PCA.



Convergence Analysis

Theorem
Let {x(l)}∞l=0 be any sequence generated by the sparse GEV algorithm in
(9). Then, all the limit points of {x(l)}∞l=0 are stationary points of the
program in (5),

ρε

n
∑

i=1

log(ε+|x
(l)
i |)−[x(l)]TAx(l) → ρε

n
∑

i=1

log(ε+|x∗
i |)−[x∗]TAx∗ := L∗,

for some stationary point x∗, ‖x(l+1) − x(l)‖ → 0, and either {x(l)}∞l=0

converges or the set of limit points of {x(l)}∞l=0 is a connected and
compact subset of S (L∗), where

S (a) := {x ∈ S : xTAx − ρε

n
∑

i=1

log(ε + |xi |) = −a}

and S is the set of stationary points of (5). If S (L∗) is finite, then any
sequence {x(l)}∞l=0 generated by (9) converges to some x∗ in S (L∗).



Convergence Analysis

Corollary
Let ρ̃ = 0 and λmax(A,B) > 0. Then, any sequence {x(l)}∞l=0 generated
by (9) converges to some x∗ such that λmax(A,B) = [x∗]TAx∗ and
[x∗]TBx∗ = 1.

◮ Local and global solutions are the same for ρ = 0.

Corollary
Let A � 0, τ = 0 and ρ̃ = 0. Then, any sequence {x(l)}∞l=0 generated by
the following algorithm

x(l+1) =
B−1Ax(l)

√

[x(l)]TAB−1Ax(l)

(12)

converges to some x∗ such that λmax(A,B) = [x∗]TAx∗ and
[x∗]TBx∗ = 1.

◮ With B = In, (12) reduces to the power method for computing
λmax(A).



Applications: Sparse PCA

◮ Sparse PCA algorithms: Proposed (DC-PCA), SDP relaxation
(DSPCA [d’Aspremont et al., 2005]), greedy approach (GSPCA
[Moghaddam et al., 2007]), regression based approach (SPCA
[Zou et al., 2006]) and generalized power method (GPowerℓ0

[Journée et al., 2008]).

◮ Pit props data [Jeffers, 1967]
◮ A benchmark data to test sparse PCA algorithms.
◮ 180 observations and 13 measured variables.
◮ 6 principal directions are considered as they capture 87% of the total

variance.

Algorithm Sparsity pattern Cumulative cardinality Cumulative variance
SPCA (7,4,4,1,1,1) 18 75.8%

DSPCA (6,2,3,1,1,1) 14 75.5%
GSPCA (6,2,2,1,1,1) 13 77.1%

GPowerℓ0
(6,2,2,1,1,1) 13 77.1%

DC-PCA (6,2,2,1,1,1) 13 77.1%



Pit Props
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Figure: (a) cumulative variance and (b) cumulative cardinality for the first 6
sparse PCs; (c) proportion of explained variance (PEV) vs. cardinality for the
first sparse PC; (d) dependence of sparsity and PEV on ρ̃ for the first sparse
PC computed with DC-PCA.



Gene Datasets

Table: Gene expression datasets

Dataset Samples (p) Genes (n) Reference
Colon cancer 62 2000 [Alon et al., 1999]

Leukemia 38 7129 [Golub et al., 1999]
Ramaswamy 127 16063 [Ramaswamy et al., 2001]

Table: Computation time (in seconds) to obtain the first sparse PC, averaged
over cardinalities ranging from 1 to n, for the Colon cancer, Leukemia and
Ramaswamy datasets.

Colon cancer Leukemia Ramaswamy
n 2000 7129 16063

SPCA 2.057 3.548 38.731
GPowerℓ0

0.182 0.223 2.337
DC-PCA 0.034 0.156 0.547



Gene Datasets
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Figure: Trade-off curves between explained variance and cardinality for (a)
Colon cancer, (b) Leukemia and (c) Ramaswamy datasets. The proportion of
variance explained is computed on the first sparse principal component.



Scalability
◮ Complexity

◮ DC-PCA, GPowerℓ0 : O(mn2), where m is the number of iterations
before convergence.

◮ SPCA : O(mn3)
◮ GSPCA : O(n4)
◮ DSPCA : O(n4√log n)

◮ Randomly chosen problems of size n ranging from 10 to 10000.

◮ Linux 3 GHz, 4 GB RAM workstation.
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Figure: Average computation time (seconds) for the first sparse PC of A vs.
problem size, n, over 100 randomly generated matrices A.
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