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tute for Biological Cybernetics (MPI), Tübingen and The Institute for Statistical

Mathematics (ISM), Tokyo. My special thanks to Alon Orlitsky and Bhaskar Rao

for supporting my application to attend the doctoral program at UCSD. I would

like to thank my entire committee for their valuable comments on my research and

special thanks to Ery Arias-Castro for creating opportunities for collaboration. It

is a pleasure to thank Ery Arias-Castro, Sanjoy Dasgupta and Lawrence Saul for

their career advice. Thanks to theory enthusiasts, Daniel Hsu, Samory Kpotufe

and Nakul Verma for many interesting discussions and to Omer Lang and David

Torres for helping me with experiments in our joint works.

Further afield, I thank Bernhard Schölkopf for supporting my application

to attend the machine learning summer school at MPI and funding my internships

at MPI that cumulatively lasted for nine months. It is during this internship, over

one of the usual late night discussions with Arthur Gretton, that the initial ideas

for this dissertation were born. Many thanks to Arthur Gretton for the countless

brainstorming sessions, for being the only guy at MPI who matched my working

time zones and for being my swimming coach. I profusely thank Kenji Fukumizu

for teaching me mathematics and hosting me at ISM for a period of two months.

I have no doubts that without Kenji, this thesis would not be as rigorous as it

is now. I thank all my research collaborators, Arthur, Bernhard, Kenji and my

advisor Gert for their time and patience in commenting on my publications.

Apart from research, my graduate life was enriched by interacting with

many interesting and smart people, whom I thank here. This includes Aravind

and Vikas for countless discussions on anything and everything for innumerous

hours, Prem and Yatharth for sharing my passion for cricket, Omer and Rupert

for being my squash buddies, and at large the Indian community which made my

xi



stay pleasant and enjoyable at UCSD.

Lastly, I am grateful to my parents for their love, patience and kind support,

to my brother, Ranga and sister, Hari, without whom I would not be what I am,

and to my wife Aishwarya, who patiently waited over the last one year for the

completion of this dissertation.

Chapters 3, 5 and 6 are based on joint work with Kenji Fukumizu, Arthur

Gretton, Gert Lanckriet and Bernhard Schölkopf, which appeared in [75,76,78,79].

Chapter 4 is based on joint work with Kenji Fukumizu and Gert Lanckriet, which

appeared in [77]. The longer version of [77] is currently under submission to the

Journal of Machine Learning Research. Chapter 7 is based on joint unpublished

work with Kenji Fukumizu and Gert Lanckriet. The dissertation author was the

primary investigator and author of these papers.

xii



VITA

1999 Bachelor of Technology in Electronics and Communication
Engineering, Sri Venkateswara University, Tirupati, India

2002 Master of Technology in Electrical Engineering, Indian Insti-
tute of Technology, Kanpur, India

2010 Doctor of Philosophy in Electrical Engineering (Signal and
Image Processing), University of California, San Diego

PUBLICATIONS

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf and G. R. G. Lanck-
riet, “Hilbert space embeddings and metrics on probability measures,” Journal of
Machine Learning Research, vol. 11, pp. 1297–1322, April 2010.

B. K. Sriperumbudur, D. A. Torres and G. R. G. Lanckriet, “A majorization-
minimization approach to the sparse generalized eigenvalue problem,” Machine
Learning, To appear.

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf and G. R. G. Lanck-
riet, “Non-parametric estimation of integral probability metrics,” in Proc. of IEEE
International Symposium on Information Theory, pp. 1428–1432, June 2010.

B. K. Sriperumbudur, K. Fukumizu and G. R. G. Lanckriet, “On the relation
between universality, characteristic kernels and RKHS embedding of measures,”
in JMLR Workshop and Conference Proceedings, vol. 9, pp. 781–788, AISTATS
2010.

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, G. R. G. Lanckriet and B. Schölk-
opf, “Kernel choice and classifiability for RKHS embeddings of probability distri-
butions,” Advances in Neural Information Processing Systems, vol. 22, pp. 1750–
1758, 2009.

B. K. Sriperumbudur and G. R. G. Lanckriet, “On the convergence of the concave-
convex procedure,”, Advances in Neural Information Processing Systems, vol. 22,
pp. 1759–1767, 2009.

A. Gretton, K. Fukumizu, Z. Harchaoui and B. K. Sriperumbudur, “A fast, consis-
tent kernel two-sample test,” Advances in Neural Information Processing Systems,
vol. 22, pp. 673–681, 2009.

K. Fukumizu, B. K. Sriperumbudur, A. Gretton and B. Schölkopf, “Characteristic
kernels on groups and semigroups,” Advances in Neural Information Processing
Systems, vol. 21, pp. 473–480, 2009.

xiii



B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. R. G. Lanckriet and B. Schölk-
opf, “Injective Hilbert space embeddings of probability measures,” in Proc. of the
21st Annual Conference on Learning Theory, pp. 111–122, 2008.

B. K. Sriperumbudur, O. Lang and G. R. G. Lanckriet, “Metric embedding for ker-
nel classification rules,” in Proc. of the 25th International Conference on Machine
Learning, pp. 1008-1015, 2008.

B. K. Sriperumbudur, D. A. Torres and G. R. G. Lanckriet, “Sparse eigen methods
by d.c. programming,” in Proc. of the 24th International Conference on Machine
Learning, pp. 831–838, 2007.

B. K. Sriperumbudur, K. Fukumizu and G. R. G. Lanckriet, “Universality, charac-
teristic kernels and RKHS embedding of measures,” Journal of Machine Learning
Research, Submitted.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf and G. R. G. Lanck-
riet, “On the empirical estimation of integral probability metrics,” Electronic Jour-
nal of Statistics, To be submitted.

B. K. Sriperumbudur and G. R. G. Lanckriet, “A proof of convergence of the
concave-convex procedure using Zangwill’s theory,”, Pattern Recognition, To be
submitted.

xiv



ABSTRACT OF THE DISSERTATION

Reproducing Kernel Space Embeddings and Metrics on Probability
Measures

by

Bharath Kumar Sriperumbudur Vangeepuram

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2010

Gert R. G. Lanckriet, Chair

The notion of Hilbert space embedding of probability measures has recently

been used in various statistical applications like dimensionality reduction, homo-

geneity testing, independence testing, etc. This embedding represents any proba-

bility measure as a mean element in a reproducing kernel Hilbert space (RKHS). A

pseudometric on the space of probability measures can be defined as the distance

between distribution embeddings: we denote this as γk, indexed by the positive

definite (pd) kernel function k that defines the inner product in the RKHS.

In this dissertation, various theoretical properties of γk and the associated

RKHS embedding are presented. First, in order for γk to be useful in practice, it is

essential that it is a metric and not just a pseudometric. Therefore, various easily

xv



checkable characterizations have been obtained for k so that γk is a metric (such

k are referred to as characteristic kernels), in contrast to the previously published

characterizations which are either difficult to check or may apply only in restricted

circumstances (e.g., on compact domains). Second, the relation of characteristic

kernels to the richness of RKHS—how well an RKHS approximates some target

function space—and other common notions of pd kernels like strictly pd (spd),

integrally spd, conditionally spd, etc., is studied. Third, the question of the nature

of topology induced by γk is studied wherein it is shown that γk associated with

integrally spd kernels—a stronger notion than a characteristic kernel—metrize the

weak∗ (weak-star) topology on the space of probability measures. Fourth, γk is

compared to integral probability metrics (IPMs) and φ-divergences, wherein it is

shown that the empirical estimator of γk is simple to compute and exhibits fast rate

of convergence compared to those of IPMs and φ-divergences. These properties

make γk to be more applicable in practice than these other families of distances.

Finally, a novel notion of embedding probability measures into a reproducing kernel

Banach space (RKBS) is proposed and its properties are studied. It is shown that

the proposed embedding and its properties generalize their RKHS counterparts,

thereby resulting in richer distance measures on the space of probabilities.

xvi



1 Introduction

The concept of distance between probability measures is a fundamental one

and has found applications in many areas of science and engineering, in particular

in probability theory and statistics [48, 61, 62]. In statistics, distances between

probability measures are used in a variety of applications, including hypothesis

tests (homogeneity tests, independence tests, and goodness-of-fit tests), density

estimation, Markov chain monte carlo, etc. As an example, homogeneity testing,

also called the two-sample problem, involves choosing whether to accept or reject

a null hypothesis H0 : P = Q versus the alternative H1 : P 6= Q, using random

samples {X(1)
j }mj=1 and {X(2)

j }nj=1 drawn i.i.d. from probability measures P and

Q on a topological space (X ,A ). It is easy to see that solving this problem is

equivalent to testing H0 : D(P,Q) = 0 versus H1 : D(P,Q) > 0, where D is

a metric on the space of all probability measures defined on X . The problems of

testing independence (whether or not a joint probability distribution factorizes into

two marginal distributions) and goodness-of-fit (whether or not a given probability

measure belongs to some pre-defined family of measures—for example, whether a

given probability measure is Gaussian or not) can be posed in an analogous form.

In non-parametric density estimation, D(pn, p0) can be used to study the quality

of the density estimate, pn, that is based on the samples {Xj}nj=1 drawn i.i.d. from

p0. Popular examples for D in these statistical applications include the Kullback-

Leibler divergence, the total variation distance, the Hellinger distance [83]—these

three are specific instances of φ-divergence [1, 15]—the Kolmogorov distance [47,

Section 14.2], the Wasserstein distance [19], etc.

In probability theory, the distance between probability measures is used

in studying limit theorems, the popular example being the central limit theorem.

1
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Another application is in metrizing the weak convergence of probability measures

on a separable metric space, where the Lévy-Prohorov distance [23, Chapter 11]

and dual-bounded Lipschitz distance (also called the Dudley metric) [23, Chapter

11] are commonly used.

In this dissertation, we study the following pseudometric (see footnote 2 for

the definition of a pseudometric) on the space of probability measures,

γk(P,Q) := D(P,Q) =

∥∥∥∥
∫

X
k(·, x) dP(x)−

∫

X
k(·, x) dQ(x)

∥∥∥∥
H

, (1.1)

which is obtained by embedding P into a reproducing kernel Hilbert space (RKHS)

[4], H as
∫
X k(·, x) dP(x), i.e.,

P 7→
∫

X
k(·, x) dP(x) (1.2)

and computing the distance between the embeddings of P and Q in H. Here,

k represents the reproducing kernel of H and ‖ · ‖H represents the RKHS norm.

We refer the reader to Chapter 2 for background on kernels and RKHSs. The

distance measure in (1.1) and the associated embedding in (1.2), which were first

proposed in the statistics and probability literature [9, Chapter 4], have recently

gained attention in statistical machine learning [37, 72] and have been used in

various applications like dimensionality reduction [28, 29], two-sample test [37],

independence tests [30, 38], density estimation [73], etc. Before we summarize the

contributions of this dissertation in Section 1.2, in the following section, we briefly

introduce the paradigm of learning and inference in RKHS—a popular framework

in statistical machine learning—which will be helpful to understand the usefulness

of the embedding in (1.2).

1.1 Learning and Inference in Reproducing Ker-

nel Hilbert Spaces

Let us consider a binary classification problem, wherein given samples D :=

{(xj , yj)}Nj=1, xj ∈ X , yj ∈ {−1,+1}, the goal is to learn a function, f : X → R

such that yj = sign(f(xj)). Suppose f(x) = 〈w, x〉 + b, where X ⊂ Rd, which
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means we would like to find w ∈ Rd and b ∈ R such that 〈w, xj〉 + b > 0 for all

j with yj = +1 and 〈w, xj〉 + b < 0 for all j with yj = −1. Here 〈·, ·〉 represents
the inner product in Rd. Since the learned function, f has to generalize well to

unknown samples (i.e., to samples not in D), the popular idea in machine learning

is to maximize the margin (i.e., maximize the distance from f to the points in D),

which yields the following program,

max
w,b

min
j∈{1,...,N}

|〈w, xj〉+ b|
‖w‖ . (1.3)

(1.3) can be rewritten as

max
w,b,θ

{θ : |〈w, xj〉+ b| ≥ θ‖w‖, ∀ j} ,

which is equivalent to

max
w,b,θ

{θ : yj(〈w, xj〉+ b) ≥ θ‖w‖, ∀ j} ,

i.e.,

min
w,b

{‖w‖ : yj(〈w, xj〉+ b) ≥ 1, ∀ j} . (1.4)

Having computed (w∗, b∗) that solves (1.4), the learned function is given by f ∗(x) =

〈w∗, x〉+ b∗, which means given any x ∈ Rd, its associated label, y can be obtained

as y = sign(f ∗(x)). (1.4) is popularly referred to as the hard-margin support vector

machine (SVM) [5] in the machine learning literature. However, one shortcoming

with this algorithm is that since f is linear in x, it is not suitable to classify samples

that cannot be linearly separated, i.e., for a given D, there does not exist w ∈ Rd

and b ∈ R such that yj = sign(〈w, xj〉 + b) for all j. To resolve this issue, Boser

et al. [5] proposed to map the input data (x1, . . . , xN) into a (possibly infinite-

dimensional) Hilbert space, H, by a typically non-linear map Φ : X → H and then

apply the algorithm in (1.4) to the mapped data set {(Φ(xj), yj)}Nj=1. Therefore,

(1.4) reduces to

min
w∈H,b∈R

{
1

2
‖w‖2H : yj(〈w,Φ(xj)〉H + b) ≥ 1, ∀ j

}
, (1.5)

whose Lagrangian dual is given by

min
{αj}Nj=1

{
1

2

N∑

l,j=1

αlαjylyj〈Φ(xl),Φ(xj)〉H −
N∑

j=1

αj :
N∑

j=1

yjαj = 0, αj ≥ 0, ∀ j
}
.

(1.6)
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Supposing (w∗, b∗) and {α∗
j}Nj=1 solve (1.5) and (1.6) respectively, we have

w∗ =

N∑

j=1

yjα
∗
jΦ(xj),

which implies

f ∗(x) =

N∑

j=1

yjα
∗
j〈Φ(xj),Φ(x)〉H + b∗.

Note that the computation of {α∗
j}Nj=1 and f ∗ depend on {xj}Nj=1 through

〈Φ(·),Φ(·)〉H, which means if H is chosen to be an RKHS with k as its reproducing

kernel, then the computation of α∗ and f ∗ depend on {xj}Nj=1 only through k as

k(x, y) = 〈Φ(x),Φ(y)〉H (see Chapter 2 for details). Therefore, by simply choosing

a kernel function, k—for example, the Gaussian kernel, k(x, y) = exp(−σ‖x −
y‖22), x, y ∈ Rd, σ > 0—the hard-margin SVM algorithm can be extended to

handle data sets that are not linearly separable—observe that k(x, y) = 〈x, y〉
yields (1.4)—which means by embedding D into an RKHS, H, it is possible to

construct non-linear algorithms (non-linearity is in the dependence of f ∗ on x)

from linear ones. Since k(x, y) = 〈k(·, x), k(·, y)〉H (see Chapter 2), we can choose

Φ(x) = k(·, x), which means

x 7→ Φ(x) = k(·, x) =
∫

X
k(·, y) dδx(y),

where δx is the Dirac measure at x. This shows that embedding x into H as

k(·, x) is equivalent to embedding δx into H as k(·, x) through (1.2). Therefore,

the embedding in (1.2) is a generalization of the idea of embedding D into H.

As mentioned above, embedding D into H provides a useful way of con-

structing non-linear algorithms from linear ones. Since (1.2) is a generalization

of embedding D into H, we show below that (1.2) provides a linear method for

dealing with the higher-order statistics of random variables. Let us consider the

embedding in (1.2), which can rewritten as

P 7→ E [k(·, X)] = E [Φ(X)] ,

where X is a X -valued random variable that is distributed according to P. Here,

E represents the expectation w.r.t. P. It is well known that P can be completely
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characterized through its moments. The advantage with the above embedding

is that by appropriately choosing Φ, P can be completely characterized by just

computing the first moment of the embedded random variable, Φ(X). To show

this, suppose

k(x, y) = c0 + c1(xy) + c2(xy)
2 + · · · , cj 6= 0, ∀ j ∈ N.

This means

E [k(y,X)] = c0 + c1E[X ]y + c2E[X
2]y2 + · · · ,

which contains all the moments of P and therefore characterizes P completely. If

k(x, y) = e〈x,y〉, x, y ∈ Rd, we obtain the moment generating function of P while

k(x, y) = ei〈x,y〉, x, y ∈ Rd yields the characteristic function of P, which are known

to characterize P completely (note that k(x, y) = ei〈x,y〉 is however not a valid

reproducing kernel). Here i :=
√
−1. Therefore, mapping random variables, X

into a suitable RKHS (as Φ(X)) provides a powerful and straightforward method

of dealing with the higher-order statistics of the variables.

Having provided an interpretation of the embedding in (1.2) through the

framework of learning in RKHS and its advantage, in the following section, we

summarize our contributions.

1.2 Summary of Contributions

From the above discussion, it should be clear that by appropriately choosing

k (or equivalently Φ), ∫

X
k(·, x) dP(x) ∈ H

completely characterizes P. Therefore, a natural question to answer is, “for what

k is the embedding in (1.2) injective?”—such kernels are defined as characteristic

kernels [30]. The injectivity of (1.2) is critical in applications like two-sample tests

where we need γk(P,Q) = 0 if and only if P = Q. While various characterizations

have been obtained in literature [30, 37, 80] for k to be characteristic—the draw-

back of these characterizations is that they are either difficult to check or may
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apply only on compact X—in Chapter 3, we obtain easily checkable characteriza-

tions for characteristic kernels that are translation invariant (on Rd and Td) and

radial on Rd (see Theorem 3.13, Corollary 3.16, Theorem 3.19 and Table 3.1). In

particular, we show that a bounded continuous translation invariant kernel on Rd

is characteristic if and only if the support of its Fourier transform is Rd. Note

that if k is characteristic then γk is a metric (and not just a pseudometric) on the

space of probability measures. We show that γk(P,Q) is the weighted L2 distance

between the characteristic functions of P and Q, with the weighting determined

by the Fourier transform of the kernel (see Theorem 3.4). This chapter is based

on the material published in [75, 78, 79].

In Chapter 4, we discuss how the characteristic property of a kernel is

related to richness of the corresponding RKHS, where richness corresponds to

how well the RKHS approximates certain target space of functions. In addition,

we also discuss the relation of characteristic kernels to various notions of positive

definite (pd) kernels like strictly pd, integrally strictly pd and conditionally strictly

pd kernels (see Chapter 2 for their definitions). We refer the reader to Figure 4.1

for a summary of the relations between these various notions of pd kernels. This

chapter is based on the material published in [78].

As mentioned above, the results in Chapters 3 and 4 provide conditions on

k for which γk is a metric on the space of probability measures. Since many dis-

tance measures on probabilities have been studied in literature, with two popular

families being integral probability metrics (IPMs) [55] and φ-divergences [1,15], in

Chapter 5, we discuss the advantages and disadvantages of γk over these families.

In particular, we compare γk to these families on two respects: (a) ease of computa-

tion and estimation and (b) strength of the distance measure. We show that while

γk(P,Q) has a nice closed form expression (see (3.5)), it is not easily computable

for all P and Q (which is also the case with IPMs and φ-divergences). Therefore,

we approximate these distances based on finite samples drawn i.i.d. from P and Q,

wherein we show that the estimator (or approximator) of γk is efficient to compute

(see Theorems 5.1, 5.3 and 5.4), strongly consistent and exhibits fast convergence

rate compared to those of IPMs and φ-divergences (see Corollary 5.12). Therefore,
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we argue that γk is well suited for statistical inference applications like two-sample

tests than these other families of distances under consideration. Since there is an

inherent connection between two-sample tests and binary classification problems,

we show how γk is related to the risk associated with a particular binary classifica-

tion problem (see Propositions 5.5 and 5.6). On a more theoretical front, we derive

conditions on k under which γk metrizes the weak∗ (weak-star) topology on the

space of probability measures—bounded continuous translation invariant charac-

teristic kernels on Rd are shown to metrize the weak∗ topology—and thereby show

that γk is weaker than popular distance measures like Kullbach-Leibler divergence,

total variation distance, Wasserstein distance, etc. This chapter is based on the

material published in [75, 76, 78].

Although we show in Chapter 5 that γk has many favorable properties for

it to be used in applications like two-sample tests, one of its disadvantages as we

show in Chapter 6 is that it is not clear how to choose an appropriate kernel for the

problem at hand. To elaborate, suppose k(x, y) = exp(−σ‖x−y‖22), x, y ∈ Rd, σ ∈
R++, which is characteristic for any σ ∈ R++. Using k in γk, we have a family

of distance measures on probabilities that is indexed by σ ∈ R++. Now, which of

these distances should we consider as the distance between P and Q when γk is used

in a two-sample test? We address this problem in Chapter 6 wherein we propose

a new distance measure that generalizes to family of pd kernels. Depending on P

and Q, the proposed distance measure chooses an appropriate kernel, k∗ so that

γk∗(P,Q) can maximally differentiate between P 6= Q. We present experimental

results of a two-sample test wherein it is shown that the proposed distance measure

exhibits better performance in distinguishing between P 6= Q than using γk with k

being chosen heuristically (see Figure 6.1). This chapter is based on the material

published in [75].

While Chapters 3–6 present various properties of the embedding in (1.2),

i.e., RKHS embedding of probability measures, in Chapter 7, we extend this no-

tion by embedding probability measures into a reproducing kernel Banach space

(RKBS) [95]. Since RKBSs are generalization of RKHSs, we show that richer

distances between probabilities can be obtained through this novel notion of em-
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bedding probabilities into an RKBS (see Example 7.16). We show that many of the

results derived for the RKHS embeddings neatly extend to the RKBS embeddings

(see Theorems 7.5, 7.6, 7.7 and 7.13). But, one drawback with RKBS embeddings

is that the associated distance measure and its estimator do not exhibit a simple

closed form unlike their RKHS counterparts. However, in some special cases (see

Examples 7.16–7.18), we show that this drawback can be resolved. The material

of this chapter is original and has not been published elsewhere.

Unless otherwise stated, throughout this dissertation we assume that X is

a topological space.



2 Kernels and Reproducing

Kernel Hilbert Spaces

In this chapter, we provide the necessary background on kernels and repro-

ducing kernel Hilbert spaces, which will be required to understand and appreciate

the results in the forthcoming chapters. The results in this chapter are collected

from [81, Chapter 4] and [91]. For a comprehensive treatment on kernels and

reproducing kernel Hilbert spaces, we refer the reader to [4, 66, 68, 81, 91].

The chapter is organized as follows. In Section 2.1, we define positive defi-

nite (pd) functions and kernels, discuss their properties and provide some examples.

While we define the related notions of integrally pd and conditionally pd kernels in

Section 2.2, the function space associated with pd kernels, called the reproducing

kernel Hilbert space is introduced and discussed in Section 2.3.

2.1 Positive Definite Functions and Kernels

A function k : X × X → R is called positive definite (pd) if, for all n ∈ N,

α1, . . . , αn ∈ R and all x1, . . . , xn ∈ X , we have

n∑

l,j=1

αlαjk(xl, xj) ≥ 0. (2.1)

Furthermore, k is said to be strictly pd if, for mutually distinct x1, . . . , xn ∈ X ,

equality in (2.1) only holds for α1 = · · · = αn = 0. k is called symmetric if

k(x, x′) = k(x′, x) for all x, x′ ∈ X . k is a called kernel on X if there exists a

9
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Hilbert space H and a map Φ : X → H such that for all x, x′ ∈ X we have

k(x, x′) = 〈Φ(x),Φ(x′)〉H.

It can be shown that k is a kernel if and only if it is symmetric and pd [81, Theorem

4.16]. A simple example of kernel is the dot-product kernel, k(x, y) = 〈x, y〉, which
is obtained by choosing H = Rd and Φ(x) = x.

Two popular classes of kernels that are considered in this dissertation are:

(a) translation invariant kernels on Rd and Td := [0, 2π)d and (b) radial kernels

on Rd. A kernel k : Rd × Rd → R is said to be translation invariant if k(x, y) =

ψ(x − y). The following theorem due to Bochner provides a characterization for

ψ, which we quote from [91, Theorem 6.6].

Theorem 2.1 (Bochner). A bounded continuous function ψ : Rd → R is positive

definite if and only if is the Fourier transform of a nonnegative finite Borel measure,

Λ, i.e.,

ψ(x) =

∫

Rd

e−i〈x,ω〉 dΛ(ω), x ∈ Rd. (2.2)

Therefore, a bounded continuous translation invariant function, k is a kernel on

Rd if and only if

k(x, y) =

∫

Rd

e−i〈x−y,ω〉 dΛ(ω), x, y ∈ Rd, (2.3)

where i :=
√
−1. Since k is real valued and symmetric, it is easy to see that Λ is

a real-valued measure on Rd and Λ(dω) = Λ(−dω). This means if ψ̂ is the Radon-

Nikodym derivative of Λ w.r.t. the Lebesgue measure, i.e., dΛ(ω) = ψ̂(ω) dω, then

ψ̂(ω) = ψ̂(−ω) = ψ̂(ω), ω ∈ Rd, i.e., ψ̂ is real and even. Here ψ̂(ω) represents the

complex conjugate of ψ̂(ω).

A continuous translation invariant function, k is said to be a kernel on

Td := [0, 2π)d if k(x, y) = ψ((x− y)mod2π), where ψ ∈ C(Td) is such that

ψ(x) =
∑

n∈Zd

Aψ(n)e
i〈x,n〉, x ∈ Td, (2.4)

with Aψ : Zd → R+, Aψ(−n) = Aψ(n) and
∑

n∈Zd Aψ(n) < ∞. Similar to Theo-

rem 2.1, which is Bochner’s theorem on Rd, (2.4) can be seen as Bochner’s theorem

on Td.
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k : Rd×Rd → R is said to be radial on Rd if k(x, y) = η(‖x−y‖22). Similar to

Theorem 2.1, the following theorem due to Schoenberg provides a characterization

for the positive definiteness of k, which we quote from [91, Corollary 7.12 and

Theorem 7.13].

Theorem 2.2 (Schoenberg). A bounded continuous function, k(x, y) = η(‖x−y‖22)
is pd on Rd if and only if there exists a nonnegative finite Borel measure, ν on

[0,∞) such that

η(r) =

∫

[0,∞)

e−rt dν(t), x ∈ Rd, (2.5)

for all r > 0.

The following proposition shows that a radial kernel is also translation in-

variant on Rd.

Proposition 2.3. If k is a radial pd kernel on Rd, then it is also translation

invariant.

Proof. Let k be radial on Rd. Then

k(x, y) = ψ(x− y) :=

∫

[0,∞)

e−t‖x−y‖
2
2 dν(t), x, y ∈ Rd,

where ν is a finite nonnegative Borel measure on [0,∞). Since

e−t‖x−y‖
2
2 =

∫

Rd

e−i〈x−y,ω〉(4πt)−d/2e−‖ω‖22/4t dω,

we have ψ(x) =
∫
Rd e

−i〈x,ω〉φ(ω) dω, where φ(ω) =
∫
[0,∞)

(4πt)−d/2e−‖ω‖22/4t dν(t). It

is easy to check that φ(ω) ≥ 0, ∀ω ∈ Rd and φ ∈ L1(Rd). Therefore k satisfies

(2.3), which means k is translation invariant on Rd.

In the following, we provide popular examples of translation invariant ker-

nels on Rd and Td.

Example 2.4 (Translation invariant kernels onRd). Let dΛ(ω) = (2π)−d/2ψ̂(ω) dω.

The following are translation invariant kernels on Rd as they satisfy (2.3) with

ψ̂ ≥ 0 and ψ̂ ∈ L1(Rd). Here ψ̂ is the Fourier transform of ψ—see (C.2) and

(C.3).
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(1) Gaussian kernel:

k(x, y) = exp

(
−‖x− y‖22

2σ2

)
, σ > 0,

ψ̂(ω) = σd exp

(
−σ

2‖ω‖22
2

)
.

Note that the Gaussian kernel is also radial on Rd as it can be obtained by

choosing ν = δ 1
2σ2

in (2.5), where δx represents the Dirac measure at x.

(2) Laplacian kernel:

k(x, y) = exp (−σ‖x− y‖1) , σ > 0,

ψ̂(ω) =

(
2

π

)d/2 d∏

j=1

σ

σ2 + ω2
j

,

where ω = (ω1, . . . , ωd).

(3) B2n+1-spline kernel [68]:

k(x, y) =

d∏

j=1

∗2n+2
1 1[− 1

2
, 1
2 ]
(xj − yj),

ψ̂(ω) =

d∏

j=1

4n+1

√
2π

sin2n+2
(ωj

2

)

ω2n+2
j

,

where ∗2n+2
1 represents the (2n + 2)-fold convolution, x = (x1, . . . , xd), y =

(y1, . . . , yd) and ω = (ω1, . . . , ωd). Choosing n = 0 gives the B1-spline kernel,

k(x, y) =
d∏

j=1

(1− |xj − yj|)1[−1,1](xj − yj),

ψ̂(ω) =
d∏

j=1

4√
2π

sin2(ωj/2)

ω2
j

.

(4) Inverse multiquadratic kernel:

k(x, y) = (c2 + ‖x− y‖22)−β, c > 0, β >
d

2
,

ψ̂(ω) =
21−β

Γ(β)

(‖ω‖2
c

)β−d/2
Kd/2−β(c‖ω‖2),
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where Γ is the Gamma function and Kν is a modified Bessel function of the

third kind of order ν ∈ R [91, Theorem 6.13]. It is easy to check that the

inverse multiquadratic kernel is also radial on Rd as it can be obtained by

choosing dν(t) = 1
Γ(β)

tβ−1e−c
2t dt in (2.5).

(5) Matérn kernel [63, Section 4.2.1]:

k(x, y) =
21−ν

Γ(ν)

(√
2ν‖x− y‖2

σ

)ν

Kν

(√
2ν‖x− y‖2

σ

)
, ν > 0, σ > 0,

ψ̂(ω) =
2d+νπd/2Γ(ν + d/2)νν

Γ(ν)σ2ν

(
2ν

σ2
+ 4π2‖ω‖22

)−(ν+d/2)

,

where ν controls the smoothness of k. The case of ν = 1
2
in the Matérn class

gives the exponential kernel, k(x, y) = exp(−‖x−y‖1/σ), while ν → ∞ gives

the Gaussian kernel. Note that ψ̂(x−y) is actually the inverse multiquadratic

kernel.

(6) Sinc kernel:

k(x, y) =

d∏

j=1

sin σ(xj − yj)

xj − yj
, σ > 0,

ψ̂(ω) =
(π
2

)d/2 d∏

j=1

1[−σ,σ](ωj).

(7) Sinc-squared kernel:

k(x, y) =
d∏

j=1

sin2 xj−yj
2

(xj − yj)2
,

ψ̂(ω) =
(2π)d/2

4d

d∏

j=1

(1− |ωj|)1[−1,1](ωj).

Example 2.5 (Translation invariant kernels on T). The following are translation

invariant kernels on T as they satisfy (2.4) with Aψ(n) ≥ 0, ∀n ∈ Z, Aψ(n) =

Aψ(−n), n ∈ Z and
∑

n∈ZAψ(n) <∞.

(1) Poisson kernel [11,80,87]:

k(x, y) =
1− σ2

σ2 − 2σ cos(x− y) + 1
, 0 < σ < 1,

Aψ(n) = σ|n|.
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(2) Dirichlet kernel [11,68]:

k(x, y) =
sin (2l+1)(x−y)

2

sin (x−y)
2

, l ∈ N,

Aψ(n) = 1D(n),

where D := {0,±1, . . . ,±l}.

(3) Fejér kernel [11]:

k(x, y) =
1

l + 1

sin2 (l+1)(x−y)
2

sin2 (x−y)
2

, l ∈ N,

Aψ(n) =

(
1− |n|

l + 1

)
1D(n).

Theorem 6.11 in [91] shows that a continuous function ψ ∈ L1(Rd) is strictly

pd if and only if ψ is bounded and ψ̂ is nonnegative and nonvanishing. This

means the kernels in Example 2.4 are strictly pd (however, the strict positive

definiteness of the sinc kernel does not follow from this result as the sinc kernel is

not integrable).

2.2 Integrally and Conditionally Positive Defi-

nite Functions

Apart from pd kernels, two related notions that appear in this dissertation

(particularly in Chapters 3 and 4) are: (a) integrally strictly pd and (b) condition-

ally strictly pd functions.

A measurable, symmetric and bounded function, k is said to be integrally

strictly pd if ∫∫

X
k(x, y) dµ(x) dµ(y) > 0, ∀µ ∈Mb(X )\{0}, (2.6)

where Mb(X ) is the set of all finite signed Borel measures on X . This definition is

a generalization of integrally strictly positive definite functions on Rd [82, Section

6]:
∫∫

Rd k(x, y)f(x)f(y) dx dy > 0 for all f ∈ L2(Rd), which is the strict positive

definiteness of the integral operator given by the kernel. The following result shows
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that integrally strictly pd functions are strictly pd kernels, while the converse is

not true which follows from [81, Proposition 4.60, Theorem 4.62].

Proposition 2.6. If k is integrally strictly pd, then it is strictly pd.

Proof. Suppose k is not strictly pd. This means for some n ∈ N and for mutually

distinct x1, . . . , xn ∈ X , there exists R ∋ αj 6= 0 for some j ∈ {1, . . . , n} such that
∑n

j,l=1 αjαlk(xj , xl) = 0. By defining µ =
∑n

j=1 αjδxj , it is easy to see that there

exists µ 6= 0 such that
∫∫

X k(x, y) dµ(x) dµ(y) = 0, which means k is not integrally

strictly pd. Therefore, if k is integrally strictly pd, then it is strictly pd. Here, δx

represents the Dirac measure at x ∈ X .

Examples of integrally strictly pd kernels on Rd include the Gaussian, Lapla-

cian, B2n+1-splines, inverse multiquadratic, Matérn kernels, etc., which follows

from the following result.

Proposition 2.7. Suppose k(x, y) = ψ(x − y), x, y ∈ Rd where ψ is a bounded

continuous pd function on Rd. Then k is integrally strictly pd if supp(Λ) = Rd,

where Λ is defined in (2.2).1

Proof. Consider
∫∫

Rd k(x, y) dµ(x) dµ(y) for any µ ∈Mb(Rd) with k(x, y) = ψ(x−
y), where Mb(Rd) is the set of all finite signed Borel measures on Rd.

B :=

∫ ∫

Rd

k(x, y) dµ(x) dµ(y)

=

∫ ∫

Rd

ψ(x− y) dµ(x) dµ(y)

(d)
=

∫ ∫ ∫

Rd

e−i〈x−y,ω〉 dΛ(ω) dµ(x) dµ(y)

(e)
=

∫ ∫

Rd

e−i〈x,ω〉 dµ(x)

∫

Rd

ei〈y,ω〉 dµ(y) dΛ(ω)

(f)
=

∫

Rd

µ̂(ω)µ̂(ω)dΛ(ω)

=

∫

Rd

|µ̂(ω)|2 dΛ(ω), (2.7)

where Bochner’s theorem (Theorem 2.1) is invoked in (d), Fubini’s theorem (The-

orem C.1) in (e) and (C.5) in (f). If supp(Λ) = Rd, then it is clear that B > 0.

1See (C.1) for the definition of support of a Borel measure, Λ.
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Note that the Gaussian, Laplacian, B2n+1-splines, inverse multiquadratic,

Matérn kernels, etc., satisfy supp(Λ) = supp(ψ̂) = Rd and are therefore integrally

strictly pd. However, it can be shown that the sinc and sinc-squared kernels are

not integrally strictly pd (see Theorem 3.13). The following result provides a

characterization for integrally strictly pd kernels when k is translation invariant

on X = Td.

Proposition 2.8. Suppose k(x, y) = ψ((x − y)mod 2π), x, y ∈ Td where ψ is a

continuous pd function on Td. Then k is integrally strictly pd if and only if Aψ(n) >

0, ∀n ∈ Zd, where Aψ is defined in (2.4).

Proof. See Proposition 4.5.

Therefore, the Poisson kernel on T is integrally strictly pd, while the Dirichlet and

Fejér kernels are not.

A function k : X × X → R is called conditionally pd if, for all n ≥ 2,

α1, . . . , αn ∈ R with
∑n

j=1 αj = 0 and all x1, . . . , xn ∈ X , we have

n∑

l,j=1

αlαjk(xl, xj) ≥ 0.

Furthermore, k is said to be conditionally strictly pd if, for mutually distinct

x1, . . . , xn ∈ X , equality in (2.1) only holds for α1 = · · · = αn = 0. From the

definitions of strictly pd and conditionally strictly pd functions, it is clear that

strictly pd kernels are conditionally strictly pd but not vice-versa.

2.3 The Reproducing Kernel Hilbert Space of a

Kernel

In this section, we introduce reproducing kernel Hilbert spaces (RKHSs)

and describe their relation to kernels.

Definition 2.9. Let X 6= ∅ and H be an Hilbert space of functions over X . A

function k : X × X → R is called a reproducing kernel of H if k(·, x) ∈ H for all
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x ∈ X and the reproducing property

f(x) = 〈f, k(·, x)〉H

holds for all f ∈ H and all x ∈ X . The space H is called a reproducing kernel

Hilbert space (RKHS) over X if for all x ∈ X the Dirac functional δx : H → R

defined by

δx(f) := f(x), f ∈ H,

is continuous.

Since L2(Rd) does not consist of functions, it is not an RKHS. Lemma 4.19

in [81] shows that reproducing kernels are kernels, where Φ(x) = k(·, x), x ∈ X , i.e.,

k(x, y) = 〈k(·, x), k(·, y)〉H, x, y,∈ X . The Moore-Aronszajn theorem states that

there is a one-to-one relation between kernels and RKHSs, i.e., every RKHS has

a unique reproducing kernel and every kernel has a unique RKHS (see Theorems

4.20 and 4.21 in [81]).

A nice interpretation for RKHS can be obtained through the following char-

acterization, quoted from [91, Theorem 10.12], if k is translation invariant on Rd.

Theorem 2.10 ( [91]). Suppose k(x, y) = ψ(x− y), x, y ∈ Rd, where ψ ∈ C(Rd)∩
L1(Rd) is a real-valued strictly pd function. Define

H :=



f ∈ L2(Rd) ∩ C(Rd) :

f̂√
ψ̂

∈ L2(Rd)



 (2.8)

and equip this space with the inner product

〈f, g〉H :=
1

(2π)d/2

〈
f̂√
ψ̂

,
ĝ√
ψ̂

〉

L2(Rd)

=
1

(2π)d/2

∫

Rd

f̂(ω)ĝ(ω)

ψ̂(ω)
dω. (2.9)

Then H is a real Hilbert space with k as the reproducing kernel.

Suppose k is a Matérn kernel on Rd, which by Theorem 2.10 means that

H =
{
f ∈ L2(Rd) ∩ C(Rd) : f̂(·)

(
1 + ‖ · ‖22

)s/2 ∈ L2(Rd)
}

(2.10)

is an RKHS with the Matérn kernel as its r.k. Since (2.10) is a Sobolev space of

order s for s > d/2, the RKHS in (2.8) can be seen as a generalization of Sobolev

spaces on Rd.



3 Characteristic Kernels and

Maximum Mean Discrepancy

In Chapter 1, we have motivated and introduced the notion of embedding a

Borel probability measure, P—defined on a topological space, X—into an RKHS,

(H, k) as

P 7→
∫

X
k(·, x) dP(x), (3.1)

using which the maximum mean discrepancy (MMD) is defined as the RKHS dis-

tance between the embeddings of probability measures P and Q, given by

γk(P,Q) =

∥∥∥∥
∫

X
k(·, x) dP(x)−

∫

X
k(·, x) dQ(x)

∥∥∥∥
H

.

For γk to be useful in practice, e.g., in applications like two-sample tests, it is

requisite that the embedding in (3.1) is injective so that γk is a metric on M1
+(X ),

the set of Borel probability measures on X—note that irrespective of whether (3.1)

is injective or not, γk is a pseudometric onM1
+(X ).2 The main focus of this chapter

is to study the conditions on k for which (3.1) is injective.

The chapter is organized as follows. First, in order to obtain a better

understanding of γk, in Section 3.1, we present results which provide different

interpretations of γk. Next, in Section 3.2, we present our main results on the

characterization of k for which (3.1) is injective—such kernels are defined to be

characteristic kernels. In Section 3.3, we present a property of γk wherein we show

2Given a set X , a metric for X is a function ρ : X ×X → R+ such that (i) ∀x, ρ(x, x) = 0, (ii)
∀x, y, ρ(x, y) = ρ(y, x), (iii) ∀x, y, z, ρ(x, z) ≤ ρ(x, y) + ρ(y, z), and (iv) ρ(x, y) = 0 ⇒ x = y.
A semi-metric only satisfies (i), (ii) and (iv). A pseudometric only satisfies (i)-(iii) of the
properties of a metric. Unlike a metric space (X , ρ), points in a pseudometric space need not be
distinguishable: one may have ρ(x, y) = 0 for x 6= y.

18
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that even if k is characteristic, there exist two distinct probability measures, P and

Q for any ε > 0 such that γk(P,Q) < ε. In other words, though a characteristic

kernel distinguishes between distinct P and Q, there can exist distributions that

are difficult to distinguish. This property of γk is significant in applications like

two-sample tests where P and Q are estimated from finite samples and the distance

between them (i.e., the estimates of P and Q) may not be statistically significant.

3.1 Interpretation of MMD

While one can start with the definition of the embedding in (3.1) and then

study its associated metric, γk, we show in Proposition 3.2 that such an embed-

ding can be obtained by relating γk(P,Q) to the integral probability metric (IPM)

between P and Q, defined as

γF(P,Q) = sup
f∈F

∣∣∣∣
∫

X
f dP−

∫

X
f dQ

∣∣∣∣ , (3.2)

where F is a class of real-valued bounded measurable functions on X . In particular

we show that γFk
(P,Q) = γk(P,Q), where Fk := {f : ‖f‖H ≤ 1}. See Chapter 5

for a detailed discussion on the advantages of γk over other IPMs. We would like to

mention that a result similar to Proposition 3.2 was also derived by [37] and [72],

but here we prove it rigorously. To prove Proposition 3.2, we need the following

supplementary result.

Lemma 3.1. Let k be a measurable and bounded pd kernel on a measurable space

X and let H be its associated RKHS. Suppose µ be a finite signed measure on X
such that

∫
X
√
k(x, x) d|µ|(x) <∞. Then, for any f ∈ H, we have

∫

X
f(x) dµ(x) =

∫

X
〈f, k(·, x)〉H dµ(x) =

〈
f,

∫

X
k(·, x) dµ(x)

〉
H
. (3.3)

Proof. Let Tµ : H → R be a linear functional defined as Tµ[f ] :=
∫
X f(x) dµ(x),

with

‖Tµ‖ := sup

{ |Tµ[f ]|
‖f‖H

: 0 6= f ∈ H

}
.

Consider

|Tµ[f ]| =
∣∣∣∣
∫

X
f(x) dµ(x)

∣∣∣∣ ≤
∫

X
|f(x)| d|µ|(x) =

∫

X
|〈f, k(·, x)〉H| d|µ|(x)
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(⋆)

≤
∫

X

√
k(x, x)‖f‖H d|µ|(x),

which implies ‖Tµ‖ < ∞, that is, Tµ is a bounded linear functional on H—in (⋆),

we used the fact that 〈f, k(·, x)〉H ≤ ‖f‖H‖k(·, x)‖H = ‖f‖H
√

〈k(·, x), k(·, x)〉H =

‖f‖H
√
k(x, x). Therefore, by the Riesz representation theorem (Theorem C.2),

there exists a unique λµ ∈ H such that Tµ[f ] = 〈f, λµ〉H, ∀ f ∈ H. Let f = k(·, u)
for some u ∈ X . Then, Tµ[k(·, u)] = 〈k(·, u), λµ〉H = λµ(u), which implies λµ =
∫
X k(·, x) dµ(x) and the result follows.

Proposition 3.2. Let Pk(X ) :=
{
P ∈M1

+(X ) :
∫
X
√
k(x, x) dP(x) <∞

}
, where

k is measurable on X . Then for any P,Q ∈ Pk(X ),

γFk
(P,Q) = γk(P,Q).

Proof. By Lemma 3.1, we have
∫
X f(x) dP(x) = 〈f,

∫
X k(·, x) dP(x)〉H for any P ∈

Pk(X ). Therefore,

γFk
(P,Q) = sup

‖f‖H≤1

∣∣∣∣
∫

X
f(x) dP(x)−

∫

X
f(x) dQ(x)

∣∣∣∣

= sup
‖f‖H≤1

∣∣∣∣
〈
f,

∫

X
k(·, x) dP(x)−

∫

X
k(·, x) dQ(x)

〉

H

∣∣∣∣

=

∥∥∥∥
∫

X
k(·, x) dP(x)−

∫

X
k(·, x) dQ(x)

∥∥∥∥
H

= γk(P,Q).

Note that this holds for any P,Q ∈ Pk(X ).

Proposition 3.2 shows that starting from an IPM in (3.2) and appropriately

choosing F (in fact choosing F = Fk), one obtains γk and the embedding in (3.1),

which hold for all P ∈ Pk(X ). However, in practice, especially in statistical

inference applications, it is not possible to check whether P ∈ Pk(X ) as P is not

known. Therefore, one would prefer to have a kernel such that
∫

X

√
k(x, x) dP(x) <∞, ∀P ∈M1

+(X ). (3.4)

The following proposition shows that (3.4) is equivalent to the kernel being bounded.

Therefore, combining Propositions 3.2 and 3.3 shows that if k is measurable and

bounded, then γk(P,Q) = ‖
∫
X k(·, x) dP(x) −

∫
X k(·, x) dQ(x)‖H for any P,Q ∈

M1
+(X ).



21

Proposition 3.3. Let f be a measurable function on X . Then
∫
X f(x) dP(x) <∞

for all P ∈M1
+(X ) if and only if f is bounded.

Proof. One direction is straightforward because if f is bounded, then

∫

X
f(x) dP(x) <∞ for all P ∈M1

+(X ).

Let us consider the other direction. Suppose f is not bounded. Then there exists

a sequence {xn} ⊂ X such that f(xn)
n→∞−→ ∞. By taking a subsequence, if

necessary, we can assume f(xn) > n2 for all n. Then, A :=
∑∞

n=1
1

f(xn)
< ∞.

Define a probability measure P on X by P =
∑∞

n=1
1

Af(xn)
δxn , where δxn is a Dirac

measure at xn. Then,
∫
X f(x) dP(x) =

1
A

∑∞
n=1

f(xn)
f(xn)

= ∞, which means if f is not

bounded, then there exists a P ∈M1
+(X ) such that

∫
X f(x) dP(x) = ∞.

Before presenting other interpretations of γk, in the following, we present a

number of equivalent representations of γk, which will be helpful in its computation.

[37] has shown that the reproducing property of k leads to

γ2k(P,Q) =

∥∥∥∥
∫

X
k(·, x) dP(x)−

∫

X
k(·, x) dQ(x)

∥∥∥∥
2

H

=

〈∫

X
k(·, x) dP(x),

∫

X
k(·, y) dP(y)

〉

H

+

〈∫

X
k(·, x) dQ(x),

∫

X
k(·, y) dQ(y)

〉

H

−2

〈∫

X
k(·, x) dP(x),

∫

X
k(·, y) dQ(y)

〉

H

(a)
=

∫∫

X
k(x, y) dP(x) dP(y) +

∫∫

X
k(x, y) dQ(x) dQ(y)

−2

∫∫

X
k(x, y) dP(x) dQ(y) (3.5)

=

∫∫

X
k(x, y) d(P−Q)(x) d(P−Q)(y), (3.6)

where (a) follows from (3.3). This means γ2k is a straightforward sum of expecta-

tions of k, and can be computed easily, for example, using (3.5) either in closed

form or using numerical integration techniques, depending on the choice of k, P

and Q. It is easy to show that, if k is a Gaussian kernel with P and Q being normal



22

distributions on Rd, then γk can be computed in a closed form (see Section 5.2.4

for examples).

In the following theorem, we prove three results which provide a nice in-

terpretation for γk when X = Rd and k is translation invariant, that is, k(x, y) =

ψ(x − y), where ψ is a pd function. We provide a detailed explanation to Theo-

rem 3.4 in Remark 3.5.

Theorem 3.4 (Different interpretations of γk). (i) Let X = Rd and k(x, y) =

ψ(x − y), where ψ : X → R is a bounded, continuous pd function. Then for any

P,Q ∈M1
+(X ),

γk(P,Q) =

√∫

Rd

|φP(ω)− φQ(ω)|2 dΛ(ω) =: ‖φP − φQ‖L2(Rd,Λ), (3.7)

where Λ ∈ M+
b (R

d) is defined in (2.2). φP and φQ represent the characteristic

functions of P and Q respectively, and M+
b (R

d) is the set of all nonnegative finite

Borel measures on Rd.

(ii) Suppose θ ∈ L1(Rd) is a continuous bounded pd function and
∫
Rd θ(x) dx = 1.

Let ψ(x) := ψt(x) = t−dθ(t−1x), t > 0. Assume that p and q are bounded uniformly

continuous Radon-Nikodym derivatives of P and Q w.r.t. the Lebesgue measure,

that is, dP = p dx and dQ = q dx. Then,

lim
t→0

γk(P,Q) = ‖p− q‖L2(Rd). (3.8)

In particular, if |θ(x)| ≤ C(1 + ‖x‖2)−d−ε for some C, ε > 0, then (3.8) holds for

all bounded p and q (not necessarily uniformly continuous).

(iii) Suppose ψ ∈ L1(Rd) and

√
ψ̂ ∈ L1(Rd). Then,

γk(P,Q) = (2π)−d/4‖Φ ∗ P− Φ ∗Q‖L2(Rd), (3.9)

where Φ :=

(√
ψ̂

)∨
and dΛ(ω) = (2π)−d/2ψ̂(ω) dω. Here, Φ ∗ P represents the

convolution of Φ and P.

Proof. (i) Let us consider (2.7) with µ := P−Q which yields (3.6). Since P̂ = φP

(see (C.5)), we have µ̂ = φP − φQ and the result follows from (2.7).
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(ii) Consider (3.5) with k(x, y) = ψt(x− y),

γ2k(P,Q) =

∫∫

Rd

ψt(x− y)p(x)p(y) dx dy +

∫∫

Rd

ψt(x− y)q(x)q(y) dx dy

−2

∫∫

Rd

ψt(x− y)p(x)q(y) dx dy

=

∫

Rd

(ψt ∗ p)(x)p(x) dx+
∫

Rd

(ψt ∗ q)(x)q(x) dx

−2

∫

Rd

(ψt ∗ q)(x)p(x) dx, (3.10)

where (ψt ∗ p)(x) :=
∫
Rd ψt(x− y)p(y) dy is the convolution of ψt and p. Note that

limt→0

∫
Rd(ψt ∗ p)(x)p(x) dx =

∫
Rd limt→0(ψt ∗ p)(x)p(x) dx, by invoking the domi-

nated convergence theorem [26, Theorem 3.24]. Since p is bounded and uniformly

continuous, by [26, Theorem 8.14], we have p ∗ ψt → p uniformly as t → 0, which

means limt→0

∫
Rd(ψt ∗ p)(x)p(x) dx =

∫
Rd p

2(x) dx. Using this in (3.10), we have

lim
t→0

γ2k(P,Q) =

∫

Rd

(p2(x) + q2(x)− 2p(x)q(x)) dx = ‖p− q‖2L2(Rd).

Suppose |θ(x)| ≤ (1 + ‖x‖2)−d−ε for some C, ε > 0. Since p ∈ L1(Rd), by [26,

Theorem 8.15], we have (p ∗ ψt)(x) → p(x) as t→ 0 for almost every x. Therefore

limt→0

∫
Rd(ψt ∗ p)(x)p(x) dx =

∫
Rd p

2(x) dx and the result follows.

(iii) Since ψ is pd, ψ̂ is nonnegative and therefore

√
ψ̂ is valid. Since

√
ψ̂ ∈ L1(Rd),

Φ exists. Define φP,Q := φP − φQ and Φ ∗ P :=
∫
Rd Φ(· − y) dP(y). Now, consider

‖Φ ∗ (P−Q)‖2L2(Rd) =

∫

Rd

|(Φ ∗ (P−Q))(x)|2 dx

=

∫

Rd

∣∣∣∣
∫

Rd

Φ(x− y) d(P−Q)(y)

∣∣∣∣
2

dx

=
1

(2π)d

∫

Rd

∣∣∣∣
∫∫

Rd

√
ψ̂(ω) ei〈x−y,ω〉 dω d(P−Q)(y)

∣∣∣∣
2

dx

(c)
=

1

(2π)d

∫

Rd

∣∣∣∣
∫

Rd

√
ψ̂(ω)(φP(ω)− φQ(ω)) e

i〈x,ω〉 dω

∣∣∣∣
2

dx

=
1

(2π)d

∫∫∫

Rd

√
ψ̂(ω)ψ̂(ξ)φP,Q(ω)φP,Q(ξ) e

i〈ω−ξ,x〉 dω dξ dx

(d)
=

∫∫

Rd

√
ψ̂(ω)ψ̂(ξ)φP,Q(ω)φP,Q(ξ)

[∫

Rd

ei〈ω−ξ,x〉

(2π)d
dx

]
dω dξ

=

∫∫

Rd

√
ψ̂(ω)

√
ψ̂(ξ)φP,Q(ω)φP,Q(ξ) δ(ω − ξ) dω dξ
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=

∫

Rd

ψ̂(ω) |φP(ω)− φQ(ω)|2 dω = (2π)d/2γ2k(P,Q),

where (c) and (d) are obtained by invoking Fubini’s theorem (Theorem C.1).

Remark 3.5. (a) (3.7) shows that γk is the L
2-distance between the characteristic

functions of P and Q computed w.r.t. the nonnegative finite Borel measure, Λ,

which is the Fourier transform of ψ. If ψ ∈ L1(Rd), then (3.7) rephrases the well

known fact (see (2.9)) that for any f ∈ H,

‖f‖2H =

∫

Rd

|f̂(ω)|2
ψ̂(ω)

dω. (3.11)

Choosing f = (P−Q) ∗ ψ in (3.11) yields f̂ = (φP − φQ)ψ̂ and therefore the result

in (3.7).

(b) Suppose dΛ(ω) = (2π)−d dω. Assume P and Q have p and q as Radon-Nikodym

derivatives w.r.t. the Lebesgue measure, that is, dP = p dx and dQ = q dx. Using

these in (3.7), it can be shown that γk(P,Q) = ‖p− q‖L2(Rd). However, this result

should be interpreted in a limiting sense as mentioned in Theorem 3.4(ii) because

the choice of dΛ(ω) = (2π)−d dω implies ψ(x) = δ(x), which does not satisfy the

conditions of Theorem 3.4(i). It can be shown that ψ(x) = δ(x) is obtained in a

limiting sense [26, Proposition 9.1]: ψt → δ in D′
d as t→ 0.

(c) Choosing θ(x) = (2π)−d/2e−‖x‖22/2 in Theorem 3.4(ii) corresponds to ψt being

a Gaussian kernel (with appropriate normalization such that
∫
Rd ψt(x) dx = 1).

Therefore, (3.8) shows that as the bandwidth, t of the Gaussian kernel approaches

zero, γk approaches the L
2-distance between the densities p and q. The same result

also holds for choosing ψt as the Laplacian kernel, B2n+1-spline, inverse multi-

quadratic, etc. Therefore, γk(P,Q) can be seen as a generalization of the L2-

distance between probability measures, P and Q.

(d) The result in (3.8) holds if p and q are bounded and uniformly continuous. Since

any condition on P and Q is usually difficult to check in statistical applications, it

is better to impose conditions on ψ rather than on P and Q. In Theorem 3.4(ii),

by imposing additional conditions on ψt, the result in (3.8) is shown to hold for all

P and Q with bounded densities p and q. The condition, |θ(x)| ≤ C(1 + ‖x‖2)−d−ε
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for some C, ε > 0, is, for example, satisfied by the inverse multiquadratic kernel,

θ(x) = C̃(1 + ‖x‖22)−τ , x ∈ Rd, τ > d/2, where C̃ =
(∫

Rd(1 + ‖x‖22)−τ dx
)−1

.

(e) (3.9) shows that γk is proportional to the L2-distance between Φ ∗ P and

Φ ∗ Q. Let Φ be such that Φ is nonnegative and Φ ∈ L1(Rd). Then, defining

Φ̃ :=
(∫

Rd Φ(x) dx
)−1

Φ = Φ/

√
ψ̂(0) =

(∫
Rd ψ(x) dx

)−1/2
Φ and using this in (3.9),

we have

γk(P,Q) = (2π)−d/4
√
ψ̂(0)

∥∥∥Φ̃ ∗ P− Φ̃ ∗Q
∥∥∥
L2(Rd)

. (3.12)

The r.h.s. of (3.12) can be interpreted as follows. Let X, Y and N be independent

random variables such that X ∼ P, Y ∼ Q and N ∼ Φ̃. This means γk is

proportional to the L2-distance computed between the densities associated with the

perturbed random variables, X + N and Y + N . Note that ‖p − q‖L2(Rd) is the

L2-distance between the densities of X and Y . Examples of ψ that satisfy the

conditions in Theorem 3.4(iii) in addition to the conditions on Φ as mentioned

here include the Gaussian and Laplacian kernels on Rd. The result in (3.9) holds

even if

√
ψ̂ /∈ L1(Rd) as the proof of (iii) can be handled using distribution theory.

However, we assumed

√
ψ̂ ∈ L1(Rd) to keep the proof simple, without delving into

distribution theory.

Although we will not be using all the results of Theorem 3.4 in deriving

our main results in the following sections, Theorem 3.4 was presented to provide a

better intuitive understanding of γk. To summarize, the core results of this section

are: (a) Proposition 3.2 (combined with Proposition 3.3), which starting from an

IPM, derives the embedding in (3.1) through γk, and (b) Theorem 3.4(i), which

provides an alternative representation for γk when k is bounded, continuous and

translation invariant on Rd.

3.2 Characteristic Kernels

Having understood how the embedding in (3.1) can be obtained as a special

case of IPM, in this section, we address our main question of when is (3.1) injective,

i.e., when is γk a metric on M1
+(X ). To address this, we first start with the

definition of a characteristic kernel that was recently introduced in [30].
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Definition 3.6 (Characteristic kernel). A bounded measurable pd kernel k is char-

acteristic to a set Q(X ) ⊂M1
+(X ) of probability measures defined on X if

P 7→
∫

X
k(·, x) dP(x), P ∈ Q(X )

is injective, i.e., for P,Q ∈ Q(X ), γk(P,Q) = 0 ⇔ P = Q. k is simply said to be

characteristic if it is characteristic to M1
+(X ). The RKHS H induced by such a k

is called a characteristic RKHS.

This means, we are interested in the question of when is k characteristic?

Before we get to the characterization of characteristic kernels, the following exam-

ples show that there exist bounded measurable kernels that are not characteristic.

Example 3.7 (Trivial kernel). Let k(x, y) = ψ(x−y) = C, ∀ x, y ∈ Rd with C > 0.

Using this in (3.5), we have γ2k(P,Q) = C + C − 2C = 0 for any P,Q ∈ M1
+(X ),

which means k is not characteristic.

Example 3.8 (Dot product kernel). Let k(x, y) = 〈x, y〉, x, y ∈ Rd. Using this in

(3.5), we have

γ2k(P,Q) = 〈µP, µP〉+ 〈µQ, µQ〉 − 2〈µP, µQ〉 = ‖µP − µQ‖22,

where µP and µQ represent the means associated with P and Q respectively, that is,

µP :=
∫
Rd x dP(x). It is clear that k is not characteristic as γk(P,Q) = 0 ⇒ µP =

µQ ; P = Q for all P,Q ∈M1
+(R

d).

Example 3.9 (Polynomial kernel of order 2). Let k(x, y) = (1+〈x, y〉)2, x, y ∈ Rd.

Using this in (3.6), we have

γ2k(P,Q) =

∫∫

Rd

(1 + 2〈x, y〉+ xT yyTx) d(P−Q)(x) d(P−Q)(y)

= 2‖µP − µQ‖22 + ‖ΣP − ΣQ + µPµ
T
P − µQµ

T
Q‖2F ,

where ΣP and ΣQ represent the covariance matrices associated with P and Q respec-

tively, that is, ΣP :=
∫
Rd xx

T dP(x)− µPµ
T
P . ‖ · ‖F represents the Frobenius norm.

Since γk(P,Q) = 0 ⇒ (µP = µQ and ΣP = ΣQ) ; P = Q for all P,Q ∈M1
+(R

d), k

is not characteristic.
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Now let us return to the question of when is k characteristic? The following

are two characterizations for characteristic kernels (and therefore their correspond-

ing RKHSs) that have already been studied in literature:

1. When X is a compact metric space, [37] showed that H is characteristic

if k is universal in the sense of Steinwart [80, Definition 4], that is, H is

dense in the Banach space of bounded continuous functions with respect to

the supremum norm. Examples of such H include those induced by the

Gaussian and Laplacian kernels on every compact subset of Rd.

2. Fukumizu et al. [29,30] extended this characterization to non-compact X and

showed that H is characteristic if and only if the direct sum of H and R is

dense in the Banach space of r-integrable (for some r ≥ 1) functions. Using

this characterization, they showed that the RKHSs induced by the Gaussian

and Laplacian kernels (supported on the entire Rd) are characteristic.

In the following sections, we provide alternative conditions for characteristic

RKHSs which address several limitations of the foregoing. First, it can be difficult

to verify the conditions of denseness in both of the above characterizations. Second,

universality is in any case an overly restrictive condition because universal kernels

assume X to be compact, that is, they induce a metric only on the space of

probability measures that are supported on compact X .

In Section 3.2.1, we present the simple characterization that integrally

strictly pd kernels (see Section 2.2 for the definition) are characteristic, that is,

the induced RKHS is characteristic. This condition is more natural—strict pd

is a natural property of interest for kernels, unlike the denseness condition—and

much easier to understand than the characterizations mentioned above. Examples

of integrally strictly pd kernels on Rd include the Gaussian, Laplacian, inverse

multiquadratics, Matérn kernel family, B2n+1-splines, etc.

Although the above characterization of integrally strictly pd kernels being

characteristic is simple to understand, it is only a sufficient condition and does

not provide an answer for kernels that are not integrally strictly pd,3 for exam-

3Proposition 2.6 shows that integrally strictly pd kernels are strictly pd. Therefore, examples
of kernels that are not integrally strictly pd include those kernels that are not strictly pd.
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ple, a Dirichlet kernel. Therefore, in Section 3.2.2, we provide an easily checkable

condition, after making some assumptions on the kernel. We present a complete

characterization of characteristic kernels when the kernel is translation invariant

on Rd. We show that a bounded continuous translation invariant kernel on Rd is

characteristic if and only if the support of the Fourier transform of the kernel is

the entire Rd. This condition is easy to check compared to the characterizations

described above. We also show that all compactly supported translation invariant

kernels on Rd are characteristic. Note, however, that the characterization of inte-

gral strict positive definiteness in Section 3.2.1 does not assume X to be Rd nor k

to be translation invariant.

We extend the result of Section 3.2.2 to X being a d-Torus, that is, Td =

S1× d. . . ×S1 ≡ [0, 2π)d, where S1 is a circle. In Section 3.2.3, we show that

a translation invariant kernel on Td is characteristic if and only if the Fourier

series coefficients of the kernel are positive, that is, the support of the Fourier

spectrum is the entire Zd. The proof of this result is similar in flavor to the one in

Section 3.2.2. As examples, the Poisson kernel can be shown to be characteristic,

while the Dirichlet kernel is not.

The main results of this section are summarized in Table 3.1.

3.2.1 Integrally Strictly Positive Definite Kernels are Char-

acteristic

Compared to the existing characterizations in literature [29,30,37], the fol-

lowing result provides a more natural and easily understandable characterization

for characteristic kernels, namely that integrally strictly pd kernels are character-

istic to M1
+(X ).

Theorem 3.10 (Integrally strictly pd kernels are characteristic). If k is an inte-

grally strictly pd kernel on X , then it is characteristic to M1
+(X ).

Before proving Theorem 3.10, we provide a supplementary result in Lemma 3.11

that provides necessary and sufficient conditions for a kernel not to be character-

istic. We show that choosing k to be integrally strictly pd violates the conditions
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in Lemma 3.11, and k is therefore characteristic to M1
+(X ).

Lemma 3.11. Let k be measurable and bounded on X . Then ∃P 6= Q, P,Q ∈
M1

+(X ) such that γk(P,Q) = 0 if and only if there exists µ ∈ Mb(X )\{0} that

satisfies:

(i)
∫∫

X k(x, y) dµ(x) dµ(y) = 0,

(ii) µ(X ) = 0.

Proof. (⇐ ) Suppose there exists µ ∈ Mb(X )\{0} that satisfies (i) and (ii) in

Lemma 3.11. By the Jordan decomposition theorem [26, Theorem 3.4], there exist

unique positive measures µ+ and µ− such that µ = µ+−µ− and µ+ ⊥ µ− (µ+ and

µ− are singular). By (ii), we have µ+(X ) = µ−(X ) =: α. Define P = α−1µ+ and

Q = α−1µ−. Clearly, P 6= Q, P,Q ∈M1
+(X ). Then, by (3.6), we have

γ2k(P,Q) =

∫∫

X
k(x, y) d(P−Q)(x) d(P−Q)(y) = α−2

∫∫

X
k(x, y) dµ(x) dµ(y)

(a)
= 0,

where (a) is obtained by invoking (i). So, we have constructed P 6= Q such that

γk(P,Q) = 0.

(⇒ ) Suppose ∃P 6= Q, P,Q ∈ M1
+(X ) such that γk(P,Q) = 0. Let µ = P − Q.

Clearly µ ∈Mb(X )\{0}. Note that by (3.6),

γ2k(P,Q) =

∫∫

X
k(x, y) d(P−Q)(x) d(P−Q)(y) =

∫∫

X
k(x, y) dµ(x) dµ(y),

and therefore (i) follows.

Proof of Theorem 3.10. Since k is integrally strictly pd on X , it satisfies (2.6),

which means there does not exist µ ∈Mb(X )\{0} that satisfies (i) in Lemma 3.11.

Therefore, by Lemma 3.11, there does not exist P 6= Q, P,Q ∈ M1
+(X ) such that

γk(P,Q) = 0, which implies k is characteristic.

Examples of integrally strictly pd kernels on Rd include the Gaussian, Lapla-

cian, inverse multiquadratics, etc., which are translation invariant kernels on Rd.

A translation variant integrally strictly pd kernel, k̃, can be obtained from a trans-

lation invariant integrally strictly pd kernel, k, as k̃(x, y) = f(x)k(x, y)f(y), where
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f : X → R is a bounded continuous function. A simple example of a translation

variant integrally strictly pd kernel on Rd is k̃(x, y) = exp(σ〈x, y〉), σ > 0, where

we have chosen f(·) = exp(σ‖ · ‖22/2) and k(x, y) = exp(−σ‖x − y‖22/2), σ > 0.

Clearly, this kernel is characteristic on compact subsets of Rd. The same result can

also be obtained from the fact that k̃ is universal on compact subsets of Rd [80, Sec-

tion 3, Example 1], recalling that universal kernels are characteristic [37, Theorem

3].

Although the condition for characteristic k in Theorem 3.10 is easy to un-

derstand compared to other characterizations in literature, it is not always easy

to check for integral strict positive definiteness of k. In the following section, we

assume X = Rd and k to be translation invariant and present a complete charac-

terization for characteristic k which is simple to check.

3.2.2 Characterization for Translation Invariant Kernels

on Rd

The complete, detailed proofs of the main results in this section are provided

in Section 3.2.4. Throughout this section, we assume as follows.

Assumption 3.12. k(x, y) = ψ(x−y) where ψ is a bounded continuous real-valued

positive definite function on X = Rd.

The following theorem characterizes all translation invariant kernels in Rd

that are characteristic.

Theorem 3.13. Suppose k satisfies Assumption 3.12. Then k is characteristic if

and only if supp(Λ) = Rd, where Λ is defined as in (2.2).

First, note that the condition supp(Λ) = Rd is easy to check compared

to all other, aforementioned characterizations for characteristic k. Although the

Gaussian and Laplacian kernels are shown to be characteristic by all the charac-

terizations we have mentioned so far, the case of B2n+1-splines is addressed only

by Theorem 3.13, which shows them to be characteristic (note that B2n+1-splines

being integrally strictly pd also follows from Theorem 3.13). In fact, one can pro-

vide a more general result on compactly supported translation invariant kernels,
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which we do later in Corollary 3.14. By Theorem 3.13, the sinc kernel is not char-

acteristic, which is not easy to show using other characterizations. By combining

Theorem 3.10 with Theorem 3.13, it can be shown that the sinc, Poisson, Dirichlet

and Féjer kernels are not integrally strictly pd. Therefore, for translation invariant

kernels on Rd, the integral strict positive definiteness of the kernel (or the lack of

it) can be tested using Theorems 3.10 and 3.13.

Proof of Theorem 3.13. We provide an outline of the complete proof, which is

presented in Section 3.2.4. The sufficient condition in Theorem 3.13 is simple to

prove and follows from Theorem 3.4(i), whereas we need a supplementary result to

prove its necessity, which is presented in Lemma 3.21 (see Section 3.2.4). Proving

the necessity of Theorem 3.13 is equivalent to showing that if supp(Λ) ( Rd, then

∃P 6= Q, P,Q ∈M1
+(X ) such that γk(P,Q) = 0. In Lemma 3.21, we present equiv-

alent conditions for the existence of P 6= Q such that γk(P,Q) = 0 if supp(Λ) ( Rd,

using which we prove the necessity of Theorem 3.13.

The whole family of compactly supported translation invariant continuous

bounded kernels on Rd is characteristic, as shown by the following corollary to

Theorem 3.13.

Corollary 3.14. Suppose k 6= 0 satisfies Assumption 3.12 and supp(ψ) is compact.

Then k is characteristic.

Proof. Since ψ ∈ Cb(Rd) is compactly supported on Rd, by (C.4), ψ ∈ D′
d. There-

fore, by the Paley-Wiener theorem (Theorem C.9), ψ̂ is the restriction to Rd of

an entire function4 on Cd, which means ψ̂ is an analytic function on Rd. Suppose

supp(ψ̂) is compact, which means there exists an open set, U ⊂ Rd such that

ψ̂(x) = 0, ∀ x ∈ U . But being analytic, this implies that ψ̂(x) = 0, ∀ x ∈ Rd,

that is, ψ = 0, which leads to a contradiction. Therefore, ψ̂ cannot be compactly

supported, that is, supp(ψ̂) = Rd, and the result follows from Theorem 3.13.

4Let D ⊂ Cd be an open subset and f : D → C be a function. f is said to be holomorphic

(or analytic) at the point z0 ∈ D if f ′(z0) := limz→z0
f(z0)−f(z)

z0−z
exists. Moreover, f is called

holomorphic if it is holomorphic at every z0 ∈ D. f is called an entire function if f is holomorphic
and D = Cd.
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The above result is interesting in practice because of the computational

advantage in dealing with compactly supported kernels. Note that proving such a

general result for compactly supported kernels on Rd is not straightforward (maybe

not even possible) with the other characterizations.

As a corollary to Theorem 3.13, the following result provides a method to

construct new characteristic kernels from a given one.

Corollary 3.15. Let k, k1 and k2 satisfy Assumption 3.12. Suppose k is charac-

teristic and k2 6= 0. Then k + k1 and k · k2 are characteristic.

Proof. Since k, k1 and k2 satisfy Assumption 3.12, k + k1 and k2 · k also satisfy

Assumption 3.12. In addition,

(k + k1)(x, y) := k(x, y) + k1(x, y)

= ψ(x− y) + ψ1(x− y)

=

∫

Rd

e−i〈x−y,ω〉 d(Λ + Λ1)(ω),

(k · k2)(x, y) := k(x, y)k2(x, y)

= ψ(x− y)ψ2(x− y)

=

∫∫

Rd

e−i〈x−y,ω+ξ〉 dΛ(ω) dΛ2(ξ)

(a)
=:

∫

Rd

e−i〈x−y,ω〉 d(Λ ∗ Λ2)(ω),

where (a) follows from the definition of convolution of measures (see [65, Section

9.14] for details). Since k is characteristic, that is, supp(Λ) = Rd, and supp(Λ) ⊂
supp(Λ + Λ1), we have supp(Λ + Λ1) = Rd and therefore k + k1 is characteristic.

Similarly, since supp(Λ) ⊂ supp(Λ∗Λ2), we have supp(Λ∗Λ2) = Rd and therefore,

k · k2 is characteristic.

Note that in the above result, we do not need k1 or k2 to be characteristic. There-

fore, one can generate all sorts of kernels that are characteristic by starting with a

characteristic kernel, k.

Since a radial kernel in (2.5) defined on Rd is also translation invariant (see

Proposition 2.3), we have the following corollary to Theorem 3.13 that provides a

necessary and sufficient condition for it to be characteristic.
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Corollary 3.16. Suppose k is radial on Rd, i.e.,

k(x, y) =

∫

[0,∞)

e−t‖x−y‖
2
2 dν(t), x, y ∈ Rd,

where ν ∈M+
b ([0,∞)). Then k is characteristic if and only if supp(ν) 6= {0}.

Proof. From the proof of Proposition 2.3, we have k(x, y) = ψ(x − y), where

ψ(x) =
∫
Rd e

−i〈x,ω〉 dΛ(ω), dΛ(ω) = φ(ω) dω and

φ(ω) =

∫

[0,∞)

1

(4πt)d/2
e−

‖ω‖22
4t dν(t).

Suppose supp(ν) 6= {0}, which means supp(φ) = supp(Λ) = Rd and therefore k

is characteristic by Theorem 3.13. On the other hand, if supp(ν) = {0}, then
k(x, y) = 1, which by Example 3.7 is not characteristic.

So far, we have considered characterizations for k such that it is charac-

teristic to M1
+(R

d). We showed in Theorem 3.13 that kernels with supp(Λ) ( Rd

are not characteristic to M1
+(R

d). Now, we can question whether such kernels can

be characteristic to some proper subset Q(Rd) of M1
+(R

d). The following result

addresses this. Note that these kernels, that is, the kernels with supp(Λ) ( Rd are

usually not useful in practice, especially in statistical inference applications, be-

cause the conditions on Q(Rd) are usually not easy to check. On the other hand,

the following result is of theoretical interest: along with Theorem 3.13, it com-

pletes the characterization of characteristic kernels that are translation invariant

on Rd. Before we state the result, we denote P ≪ Q to mean that P is absolutely

continuous w.r.t. Q.

Theorem 3.17. Let P1(Rd) := {P ∈ M1
+(R

d) : φP ∈ L1(Rd) ∪ L2(Rd), P ≪
λ and supp(P) is compact}, where λ is the Lebesgue measure. Suppose k satisfies

Assumption 3.12 and supp(Λ) ( Rd has a non-empty interior, where Λ is defined

as in (2.2). Then k is characteristic to P1(Rd).

Proof. See Section 3.2.4.

Although, by Theorem 3.13, the kernels with supp(Λ) ( Rd are not char-

acteristic to M1
+(R

d), Theorem 3.17 shows that there exists a subset of M1
+(R

d)
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to which a subset of these kernels are characteristic. This type of result is not

available for the previously mentioned characterizations. An example of a kernel

that satisfies the conditions in Theorem 3.17 is the sinc kernel (see Example 2.4)

which has supp(Λ) = [−σ, σ]d. The condition that supp(Λ) ( Rd has a non-empty

interior is important for Theorem 3.17 to hold. If supp(Λ) has an empty interior

(examples include periodic kernels), then one can construct P 6= Q, P,Q ∈ P1(Rd)

such that γk(P,Q) = 0. This is illustrated in Example 3.24 of Section 3.2.4.

So far, we have characterized the characteristic property of kernels that sat-

isfy (a) supp(Λ) = Rd or (b) supp(Λ) ( Rd with int(supp(Λ)) 6= ∅. In the following

section, we investigate kernels that have supp(Λ) ( Rd with int(supp(Λ)) = ∅, ex-
amples of which include periodic kernels on Rd. This discussion uses the fact that

a periodic function on Rd can be treated as a function on Td, the d-Torus.

3.2.3 Characterization for Translation Invariant Kernels

on Td

Let X = ×d
j=1[0, τj) and τ := (τ1, . . . , τd). A function defined on X with

periodic boundary conditions is equivalent to considering a periodic function on Rd

with period τ . With no loss of generality, we can choose τj = 2π, ∀ j which yields

X = [0, 2π)d =: Td, called the d-Torus. The results presented here hold for any

0 < τj <∞, ∀ j but we choose τj = 2π for simplicity. Similar to Assumption 3.12,

we make the following assumption.

Assumption 3.18. k(x, y) = ψ((x−y)mod 2π), where ψ is a continuous real-valued

positive definite function on X = Td.

We now state the result that defines characteristic kernels on Td.

Theorem 3.19. Suppose k satisfies Assumption 3.18. Then k is characteristic

to M1
+(T

d) if and only if Aψ(0) ≥ 0, Aψ(n) > 0, ∀n 6= 0, where Aψ is defined in

(2.4).

The proof is provided in Section 3.2.4 and the idea is similar to that of

Theorem 3.13. Based on the above result, one can generate characteristic kernels
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by constructing an infinite sequence of positive numbers that are summable and

then using them in (2.4). Note that the Poisson kernel on T is characteristic while

the Dirichlet and Féjer kernels are not. Some other examples of characteristic

kernels on T are:

(1) k(x, y) = eα cos(x−y) cos(α sin(x − y)), 0 < α ≤ 1 ↔ Aψ(0) = 1, Aψ(n) =

α|n|

2|n|! , ∀n 6= 0.

(2) k(x, y) = − log(1 − 2α cos(x − y) + α2), 0 < α < 1 ↔ Aψ(0) = 0, Aψ(n) =

α|n|

|n| , ∀n 6= 0.

(3) k(x, y) = (π − (x− y)mod 2π)
2 ↔ Aψ(0) =

π2

3
, Aψ(n) =

2
n2 , ∀n 6= 0.

(4) k(x, y) = sinhα
coshα−cos(x−y) , α > 0 ↔ Aψ(0) = 1, Aψ(n) = e−α|n|, ∀n 6= 0.

(5) k(x, y) = π cosh(α(π−(x−y)mod 2π))
α sinh(πα)

↔ Aψ(0) =
1
α2 , Aψ(n) =

1
n2+α2 , ∀n 6= 0.

The following result relates characteristic kernels and universal kernels de-

fined on Td.

Corollary 3.20. Let k be a characteristic kernel satisfying Assumption 3.18 with

Aψ(0) > 0. Then k is also universal.

Proof. Since k is characteristic with Aψ(0) > 0, we have Aψ(n) > 0, ∀n. Therefore,
by Corollary 11 of [80], k is universal.

Since k being universal implies that it is characteristic, the above result

shows that the converse is not true (though almost true except that Aψ(0) can

be zero for characteristic kernels). The condition on Aψ in Theorem 3.19, that is,

Aψ(0) ≥ 0, Aψ(n) > 0, ∀n 6= 0 can be equivalently written as supp(Aψ) = Zd or

supp(Aψ) = Zd\{0}. Therefore, Theorems 3.13 and 3.19 are of similar flavor. In

fact, these results can be generalized to locally compact Abelian groups. Fukumizu

et al. [31] show that a bounded continuous translation invariant kernel on a locally

compact Abelian group G is characteristic to the set of all probability measures on

G if and only if the support of the Fourier transform of the translation invariant

kernel is the dual group of G. In our case, (Rd,+) and (Td,+) are locally compact
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Abelian groups with (Rd,+) and (Zd,+) as their respective dual groups. In [31],

these results are also extended to translation invariant kernels on non-Abelian

compact groups and the semigroup Rd
+.

3.2.4 Proofs

First, we present a supplementary result in Lemma 3.21 that will be used

to prove Theorem 3.13. The idea of Lemma 3.21 is to characterize the equivalent

conditions for the existence of P 6= Q such that γk(P,Q) = 0 when supp(Λ) ( Rd.

Its proof relies on the properties of characteristic functions, which we have collected

in Theorem C.7.

Lemma 3.21. Let P0(Rd) := {P ∈ M1
+(R

d) : φP ∈ L1(Rd) ∪ L2(Rd) and P ≪
λ}, where λ is the Lebesgue measure. Suppose k satisfies Assumption 3.12 and

supp(Λ) ( Rd, where Λ is defined as in (2.2). Then, for any Q ∈ P0(Rd),

∃P 6= Q, P ∈ P0(Rd) such that γk(P,Q) = 0 if and only if there exists a non-zero

function θ : Rd → C that satisfies the following conditions:

(i) θ ∈ (L1(Rd) ∪ L2(Rd)) ∩ Cb(Rd) is conjugate symmetric, that is, θ(x) =

θ(−x), ∀ x ∈ Rd,

(ii) θ∨ ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)),

(iii)
∫
Rd |θ(x)|2 dΛ(x) = 0,

(iv) θ(0) = 0,

(v) infx∈Rd{θ∨(x) + q(x)} ≥ 0.

Proof. Define L1 := L1(Rd), L2 := L2(Rd) and Cb := Cb(Rd).

(⇐ ) Suppose there exists a non-zero function θ satisfying (i) – (v). For any

Q ∈ P0(Rd), we have φQ ∈ L1 ∪ L2 and φQ ∈ Cb (by Theorem C.7), that is,

φQ ∈ (L1 ∪ L2) ∩ Cb. Now, consider the case of φQ ∈ L1 ∩ Cb. Since φQ ∈ L1,

by the inversion theorem for characteristic functions (see [23, Theorem 9.5.4]),

Q is absolutely continuous w.r.t. λ. If q is the Radon-Nikodym derivative of Q

w.r.t. λ, then q = [φQ]
∨ ∈ L1. In addition, by the Riemann-Lebesgue lemma
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(Lemma C.8), we have q ∈ C0(Rd) ⊂ Cb, which therefore implies q ∈ L1 ∩ Cb.

When φQ ∈ L2 ∩ Cb, the Fourier transform in the L2 sense (see Section C.1.2)

implies that q = [φQ]
∨ ∈ L1∩L2. Therefore, q ∈ L1∩ (L2∪Cb). Define p := q+θ∨.

Clearly p ∈ L1∩ (L2∪Cb). In addition, φP = p̂ = q̂+ θ̂∨ = φQ+ θ ∈ (L1∪L2)∩Cb.
Since θ is conjugate symmetric, θ∨ is real valued and so is p. Consider

∫

Rd

p(x) dx =

∫

Rd

q(x) dx+

∫

Rd

θ∨(x) dx = 1 + θ(0) = 1.

(v) implies that p is nonnegative. Therefore, p is the Radon-Nikodym derivative

of a probability measure P w.r.t. λ, where P is such that P 6= Q and P ∈ P0(Rd).

By (3.7), we have

γ2k(P,Q) =

∫

Rd

|φP(x)− φQ(x)|2 dΛ(x) =
∫

Rd

|θ(x)|2 dΛ(x) = 0.

(⇒ ) Suppose that there exists P 6= Q, P,Q ∈ P0(Rd) such that γk(P,Q) =

0. Define θ := φP − φQ. We need to show that θ satisfies (i) – (v). Recalling

Theorem C.7, P,Q ∈ P0(Rd) implies φP, φQ ∈ (L1 ∪L2)∩Cb and p, q ∈ L1∩ (L2 ∪
Cb). Therefore, θ = φP − φQ ∈ (L1 ∪L2)∩Cb and θ∨ = p− q ∈ L1 ∩ (L2 ∪Cb). By
Theorem C.7, φP and φQ are conjugate symmetric and so is θ. Therefore θ satisfies

(i) and θ∨ satisfies (ii). θ satisfies (iv) as

θ(0) =

∫

Rd

θ∨(x) dx =

∫

Rd

(p(x)− q(x)) dx = 0.

Non-negativity of p yields (v). By (3.7), γk(P,Q) = 0 implies (iii).

Remark 3.22. Note that the dependence of θ on the kernel appears in the form

of (iii) in Lemma 3.21. This condition shows that λ(supp(θ) ∩ supp(Λ)) = 0, that

is, the supports of θ and Λ are disjoint w.r.t. the Lebesgue measure, λ. In other

words, supp(θ) ⊂ cl(Rd\supp(Λ)). So, the idea is to introduce the perturbation, θ

over an open set, U where Λ(U) = 0. The remaining conditions characterize the

nature of this perturbation so that the constructed measure, p = q + θ∨, is a valid

probability measure. Conditions (i), (ii) and (iv) simply follow from θ = φP − φQ,

while (v) ensures that p(x) ≥ 0, ∀ x.

Using Lemma 3.21, we now present the proof of Theorem 3.13.
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Proof of Theorem 3.13. The sufficiency follows from (3.7): if supp(Λ) = Rd, then

γ2k(P,Q) =
∫
Rd |φP(x) − φQ(x)|2 dΛ(x) = 0 ⇒ φP = φQ, a.e. Recalling from

Theorem C.7 that φP and φQ are uniformly continuous on Rd, we have that P = Q,

and therefore k is characteristic. To prove necessity, we need to show that if

supp(Λ) ( Rd, then there exists P 6= Q, P,Q ∈M1
+(R

d) such that γk(P,Q) = 0. By

Lemma 3.21, this is equivalent to showing that there exists a non-zero θ satisfying

the conditions in Lemma 3.21. Below, we provide a constructive procedure for

such a θ when supp(Λ) ( Rd, thereby proving the result.

Consider the following function, fβ,ω0 ∈ C∞(Rd) supported in [ω0 − β, ω0+

β],

fβ,ω0(ω) =

d∏

j=1

hβj ,ω0,j
(ωj) with ha,b(y) := 1[−a,a](y − b) e

− a2

a2−(y−b)2 ,

where ω = (ω1, . . . , ωd), ω0 = (ω0,1, . . . , ω0,d), β = (β1, . . . , βd), a ∈ R++, b ∈ R

and y ∈ R. Since supp(Λ) ( Rd, there exists an open set U ⊂ Rd such that

Λ(U) = 0. So, there exists β ∈ Rd
++ and ω0 > β (element-wise inequality) such

that [ω0 − β, ω0 + β] ⊂ U . Let

θ = α(fβ,ω0 + fβ,−ω0), α ∈ R\{0},

which implies supp(θ) = [−ω0−β,−ω0+β]∪[ω0−β, ω0+β] is compact. Clearly θ ∈
Dd ⊂ Sd which implies θ∨ ∈ Sd ⊂ L1(Rd) ∩ L2(Rd). Therefore, by construction, θ

satisfies (i) – (iv) in Lemma 3.21. Since
∫
Rd θ

∨(x) dx = θ(0) = 0 (by construction),

θ∨ will take negative values, so we need to show that there exists Q ∈ P0(Rd)

such that (v) in Lemma 3.21 holds. Let Q be such that it has a density given by

q(x) = Cl

d∏

j=1

1

(1 + |xj|2)l
, l ∈ N where Cl =

d∏

j=1

(∫

R

(1 + |xj|2)−l dxj
)−1

,

and x = (x1, . . . , xd). It can be verified that choosing α such that

0 < |α| ≤ Cl

2 supx

∣∣∣
∏d

j=1 h
∨
βj ,0

(xj)(1 + |xj |2)l cos(〈ω0, x〉)
∣∣∣
<∞,

ensures that θ satisfies (v) in Lemma 3.21. The existence of finite α is guaranteed

as ha,0 ∈ D1 ⊂ S1 which implies h∨a,0 ∈ S1, ∀ a. We conclude there exists a non-zero

θ as claimed earlier, which completes the proof.
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To elucidate the necessity part in the above proof, in the following, we

present a simple example that provides an intuitive understanding about the con-

struction of θ such that for a given Q, P 6= Q can be constructed with γk(P,Q) = 0.

Example 3.23. Let Q be a Cauchy distribution in R, that is, q(x) = 1
π(1+x2)

with characteristic function, φQ(ω) =
1√
2π
e−|ω| in L1(R). Let ψ be a sinc kernel,

that is, ψ(x) =
√

2
π
sin(βx)

x
with Fourier transform5 given by ψ̂(ω) = 1[−β,β](ω) and

supp(ψ̂) = [−β, β] ( R. Let θ be

θ(ω) =
α

2i

[
∗N1 1[−β

2
,β
2 ]
(ω)
]
∗ [δ(ω − ω0)− δ(ω + ω0)] ,

where |ω0| ≥
(
N+2
2

)
β, N ≥ 2 and α 6= 0. ∗N1 represents the N-fold convolution.

Note that θ is such that supp(θ)∩supp(ψ̂) is a null set w.r.t. the Lebesgue measure,

which satisfies (iii) in Lemma 3.21. It is easy to verify that θ ∈ L1(R) ∩ L2(R) ∩
Cb(R) also satisfies conditions (i) and (iv) in Lemma 3.21. θ∨ can be computed as

θ∨(x) =
2Nα√
2π

sin(ω0x)
sinN

(
βx
2

)

xN
,

and θ∨ ∈ L1(R) ∩ L2(R) ∩ Cb(R) satisfies (ii) in Lemma 3.21. Choose

0 < |α| ≤
√
2√

πβN supx
∣∣(1 + x2) sin(ω0x)sinc

N
(
βx
2π

)∣∣ ,

where sinc(x) := sin(πx)
πx

. Define g(x) := sin(ω0x)sinc
N
(
βx
2π

)
. Since g ∈ S1, 0 <

supx |(1+x2)g(x)| <∞ and, therefore, α is a finite non-zero number. It is easy to

see that θ satisfies (v) of Lemma 3.21. Then, by Lemma 3.21, there exists P 6= Q,

P ∈ P0(Rd), given by

p(x) =
1

π(1 + x2)
+

2Nα√
2π

sin(ω0x)
sinN

(
βx
2

)

xN
,

with φP = φQ + θ = φQ + iθI where θI = Im[θ] and φP ∈ L1(R). So, we have

constructed P 6= Q, such that γk(P,Q) = 0. Figure 3.1 shows the plots of ψ, ψ̂, θ,

θ∨, q, φQ, p and |φP| for β = 2π, N = 2, ω0 = 4π and α = 1
50
.

We now prove Theorem 3.17.

5Since the sinc kernel is not in L1(R), its Fourier transform does not exist in the L1-sense.
However, its Fourier transform exists in the L2-sense. See Section C.1.2 for details.
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Figure 3.1: (a-a′) ψ and its Fourier spectrum ψ̂, (b-b′) θ∨ and iθ, (c-c′) the
Cauchy distribution, q and its characteristic function φQ, and (d-d′) p = q + θ∨

and |φP|. See Example 3.23 for details.
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Proof of Theorem 3.17. Suppose ∃P 6= Q, P,Q ∈ P1(Rd) such that γk(P,Q) = 0.

Since any positive Borel measure on Rd is a distribution [65, p. 157], P and Q can

be treated as distributions with compact support. By the Paley-Wiener theorem

(Theorem C.9), φP and φQ are restrictions to Rd of entire functions on Cd. Let

θ := φP − φQ. Since γk(P,Q) = 0, we have from (3.7) that
∫
Rd |θ(ω)|2 dΛ(ω) = 0.

From Remark 3.22, it follows that supp(θ) ⊂ cl(Rd\supp(Λ)). Since supp(Λ) has a
non-empty interior, we have supp(θ) ( Rd. Thus, there exists an open set, U ⊂ Rd

such that θ(x) = 0, ∀ x ∈ U . Since θ is analytic on Rd, we have θ = 0, which

means φP = φQ ⇒ P = Q, leading to a contradiction. So, there does not exist

P 6= Q, P,Q ∈ P1(Rd) such that γk(P,Q) = 0, and k is therefore characteristic to

P1(Rd).

The condition that supp(Λ) has a non-empty interior is important for The-

orem 3.17 to hold. In the following, we provide a simple example to show that

P 6= Q, P,Q ∈ P1(Rd) can be constructed such that γk(P,Q) = 0, if k is a periodic

translation invariant kernel for which int(supp(Λ)) = ∅.

Example 3.24. Let Q be a uniform distribution on [−β, β] ⊂ R, that is, q(x) =
1
2β
1[−β,β](x) with its characteristic function, φQ(ω) = 1

β
√
2π

sin(βω)
ω

∈ L2(R). Let

ψ be the Dirichlet kernel with period τ , where τ ≤ β, that is, ψ(x) =
sin (2l+1)πx

τ

sin πx
τ

and ψ̂(ω) =
√
2π
∑l

j=−l δ
(
ω − 2πj

τ

)
with supp(ψ̂) =

{
2πj
τ

: j ∈ {0,±1, . . . ,±l}
}
.

Clearly, supp(ψ̂) has an empty interior. Let θ be

θ(ω) =
8
√
2α

i
√
π

sin
(ωτ

2

) sin2
(
ωτ
4

)

τω2
,

with α ≤ 1
2β
. It is easy to verify that θ ∈ L1(R) ∩ L2(R) ∩ Cb(R), so θ satisfies (i)

in Lemma 3.21. Since θ(ω) = 0 at ω = 2πl
τ
, l ∈ Z, supp(θ)∩ supp(ψ̂) ⊂ supp(ψ̂) is

a set of Lebesgue measure zero, so (iii) and (iv) in Lemma 3.21 are satisfied. θ∨

is given by

θ∨(x) =





2α|x+ τ
2 |

τ
− α, −τ ≤ x ≤ 0

α− 2α|x− τ
2 |

τ
, 0 ≤ x ≤ τ

0, otherwise,
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where θ∨ ∈ L1(R) ∩ L2(R) ∩ Cb(R) satisfies (ii) in Lemma 3.21. Now, consider

p = q + θ∨, which is given as

p(x) =





1
2β
, x ∈ [−β,−τ ] ∪ [τ, β]

2α|x+ τ
2 |

τ
+ 1

2β
− α, x ∈ [−τ, 0]

α + 1
2β

− 2α|x− τ
2 |

τ
, x ∈ [0, τ ]

0, otherwise.

Clearly, p(x) ≥ 0, ∀ x and
∫
R p(x) dx = 1. φP = φQ+θ = φQ+ iθI where θI = Im[θ]

and φP ∈ L2(R). We have therefore constructed P 6= Q, such that γk(P,Q) = 0,

where P and Q are compactly supported in R with characteristic functions in L2(R),

that is, P,Q ∈ P1(Rd). Figure 3.2 shows the plots of ψ, ψ̂, θ, θ∨, q, φQ, p and

|φP| for τ = 2, l = 2, β = 3 and α = 1
8
.

We now present the proof of Theorem 3.19, which is similar to that of

Theorem 3.13.

Proof of Theorem 3.19. (⇐ ) From (3.6), we have

γ2k(P,Q) =

∫∫

Td

ψ(x− y) d(P−Q)(x) d(P−Q)(y)

(a)
=

∫∫

Td

∑

n∈Zd

Aψ(n) e
i〈x−y,n〉 d(P−Q)(x) d(P−Q)(y)

(b)
=
∑

n∈Zd

Aψ(n)

∣∣∣∣
∫

Td

e−i〈x,n〉 d(P−Q)(x)

∣∣∣∣
2

(c)
= (2π)2d

∑

n∈Zd

Aψ(n) |AP(n)−AQ(n)|2 , (3.13)

where we have invoked (2.4) in (a), Fubini’s theorem in (b) and

AP(n) :=
1

(2π)d

∫

Td

e−i〈n,x〉 dP(x), n ∈ Zd,

in (c). AP is the Fourier transform of P in Td. Since Aψ(0) ≥ 0 and Aψ(n) >

0, ∀n 6= 0, we have AP(n) = AQ(n), ∀n. Therefore, by the uniqueness theorem of

Fourier transform, we have P = Q.

(⇒ ) Proving the necessity is equivalent to proving that if Aψ(0) ≥ 0, Aψ(n) >



43

−5 0 5

−1

0

1

2

3

4

5

x

ψ
(x

)

(a)

(2
π)

−
1/

2 ψ
∧ (ω

)

−4π −3π −2π −π 0 π 2π 3π 4π
0

1

(a′)

−6 −3 −2 −1 0 1 2 3 6

−1/8

0    

1/8

x

θv (x
)

(b)

−0.08

−0.04

0

0.04

0.08

iθ
(ω

)

−4π −3π −2π −π 0 π 2π 3π 4π

(b′)

−6 −3 −2 −1 0 1 2 3 6
0  

1/6

x

q(
x)

(c)

−0.1

0

0.1

0.2

0.3

0.4

φ Q
(ω

)

−4π −3π −2π −π 0 π 2π 3π 4π

(c′)

−6 −3 −2 −1 0 1 2 3 6
0   

1/24

1/6

7/24

x

p(
x)

(d)

0

0.1

0.2

0.3

0.4

|φ
P
(ω

)|

−4π −3π −2π −π 0 π 2π 3π 4π

(d′)

Figure 3.2: (a-a′) ψ and its Fourier spectrum ψ̂, (b-b′) θ∨ and iθ, (c-c′) the
uniform distribution, q and its characteristic function φQ, and (d-d′) p = q + θ∨

and |φP|. See Example 3.24 for details.
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0, ∀n 6= 0 is violated, then k is not characteristic, which is equivalent to showing

that ∃P 6= Q such that γk(P,Q) = 0. Let Q be a uniform probability measure

with q(x) = 1
(2π)d

, ∀ x ∈ Td. Let k be such that Aψ(n) = 0 for some n = n0 6= 0.

Define

AP(n) :=

{
AQ(n), n 6= ±n0

AQ(n) + θ(n), n = ±n0

,

where AQ(n) =
1

(2π)d
δ0n and θ(−n0) = θ(n0). So,

p(x) =
∑

n∈Zd

AP(n)e
i〈x,n〉 =

1

(2π)d
+ θ(n0)e

i〈x,n0〉 + θ(−n0)e
−i〈x,n0〉.

Choose θ(n0) = iα, α ∈ R. Then, p(x) = 1
(2π)d

− 2α sin(〈x, n0〉). It is easy to check

that p integrates to one. Choosing |α| ≤ 1
2(2π)d

ensures that p(x) ≥ 0, ∀ x ∈ Td. By

using AP(n) in (3.13), it is clear that γk(P,Q) = 0. Therefore, ∃P 6= Q such that

γk(P,Q) = 0, which means k is not characteristic.

3.3 Dissimilar Distributions with Small MMD

So far, we have studied different characterizations for the kernel k such

that γk is a metric on M1
+(X ). As mentioned in Chapter 1, the metric property

of γk is crucial in many statistical inference applications like hypothesis testing.

Therefore, in practice, it is important to use characteristic kernels. However, in this

section, we show that characteristic kernels, while guaranteeing γk to be a metric

on M1
+(X ), may nonetheless have difficulty in distinguishing certain distributions

on the basis of finite samples. More specifically, in Theorem 3.27 we show that

for a given kernel k and for any ε > 0, there exist P 6= Q such that γk(P,Q) < ε.

Before proving the result, we motivate it through the following example.

Example 3.25. Let P be absolutely continuous w.r.t. the Lebesgue measure on R

with the Radon-Nikodym derivative defined as

p(x) = q(x) + αq(x) sin(νπx), (3.14)

where q is the Radon-Nikodym derivative of Q w.r.t. the Lebesgue measure satisfy-

ing q(x) = q(−x), ∀ x and α ∈ [−1, 1]\{0}, ν ∈ R\{0}. It is obvious that P 6= Q.
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The characteristic function of P is given as

φP(ω) = φQ(ω)−
iα

2
[φQ(ω − νπ)− φQ(ω + νπ)] , ω ∈ R,

where φQ is the characteristic function associated with Q. Note that with increas-

ing |ν|, p has higher frequency components in its Fourier spectrum, as shown in

Figure 3.3. In Figure 3.3, (a-c) show the plots of p when q = U [−1, 1] (uniform

distribution) and (a′-c′) show the plots of p when q = N(0, 2) (zero mean normal

distribution with variance 2) for ν = 0, 2 and 7.5 with α = 1
2
.

Consider the B1-spline kernel on R given by k(x, y) = ψ(x− y) where

ψ(x) =

{
1− |x|, |x| ≤ 1

0, otherwise
, (3.15)

with its Fourier transform given by

ψ̂(ω) =
2
√
2√
π

sin2 ω
2

ω2
.

Since ψ is characteristic to M1
+(R), γk(P,Q) > 0 (see Theorem 3.13). However, it

would be of interest to study the behavior of γk(P,Q) as a function of ν. We study

the behavior of γ2k(P,Q) through its unbiased, consistent estimator,6 γ2k,u(m,m) as

considered by [37, Lemma 7].

Figure 3.4(a) shows the behavior of γ2k,u(m,m) as a function of ν for q =

U [−1, 1] and q = N(0, 2) using the B1-spline kernel in (3.15). Since the Gaussian

kernel, k(x, y) = e−(x−y)2 is also a characteristic kernel, its effect on the behavior of

γ2k,u(m,m) is shown in Figure 3.4(b) in comparison to that of the B1-spline kernel.

In Figure 3.4, we observe two circumstances under which γ2k may be small.

First, γ2k,u(m,m) decays with increasing |ν|, and can be made as small as desired by

choosing a sufficiently large |ν|. Second, in Figure 3.4(a), γ2k,u(m,m) has troughs

at ν = ω0

π
where ω0 = {ω : ψ̂(ω) = 0}. Since γ2k,u(m,m) is a consistent estimate

6Let {Xj}mj=1 and {Yj}mj=1 be random samples drawn i.i.d. from P and Q respectively.

An unbiased empirical estimate of γ2
k(P,Q), denoted as γ2

k,u(m,m) is given by γ2
k,u(m,m) =

1
m(m−1)

∑m

l 6=j h(Zl, Zj), which is a one-sample U -statistic [69, Chapter 5] with h(Zl, Zj) :=

k(Xl, Xj) + k(Yl, Yj) − k(Xl, Yj) − k(Xj , Yl), where Z1, . . . , Zm are m i.i.d. random variables
with Zj := (Xj , Yj). See Chapter 5 and [37, Lemma 7] for more details on the estimation of γk
from finite samples.
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Figure 3.3: (a) q = U [−1, 1], (a′) q = N(0, 2). (b-c) and (b′-c′) denote p(x)
computed as p(x) = q(x) + 1

2
q(x) sin(νπx) with q = U [−1, 1] and q = N(0, 2)

respectively. ν is chosen to be 2 in (b,b′) and 7.5 in (c,c′). See Example 3.25 for
details.

of γ2k(P,Q), one would expect similar behavior from γ2k(P,Q). This means that,

although the B1-spline kernel is characteristic to M1
+(R), in practice, it becomes

harder to distinguish between P and Q with finite samples, when P is constructed

as in (3.14) with ν = ω0

π
. In fact, one can observe from a straightforward spectral

argument that the troughs in γ2k(P,Q) can be made arbitrarily deep by widening q,

when q is Gaussian.

For characteristic kernels, although γk(P,Q) > 0 when P 6= Q, Exam-

ple 3.25 demonstrates that one can construct distributions such that γ2k,u(m,m)

is indistinguishable from zero with high probability, for a given sample size m.

Below, in Theorem 3.27, we explicitly construct P 6= Q such that |Pϕl − Qϕl| is
large for some large l, but γk(P,Q) is arbitrarily small, making it hard to detect

a non-zero value of γk(P,Q) based on finite samples. Here, ϕl ∈ L2(X ) represents

the bounded orthonormal eigenfunctions of a positive definite integral operator

associated with k and Pϕl :=
∫
X ϕl dP. Based on this theorem, for example, in

Example 3.25, the decay mode of γk for large |ν| can be investigated.
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Figure 3.4: Behavior of the empirical estimate of γ2k(P,Q) w.r.t. ν for (a) the
B1-spline kernel and (b) the Gaussian kernel. P is constructed from Q as defined
in (3.14). “Uniform” corresponds to Q = U [−1, 1] and “Gaussian” corresponds to
Q = N(0, 2). m = 1000 samples are generated from P and Q to estimate γ2k(P,Q)
through γ2k,u(m,m). This is repeated 100 times and the average γ2k,u(m,m) is
plotted in both figures. Since the quantity of interest is the average behavior of
γ2k,u(m,m), we omit the error bars. See Example 3.25 for details.

The construction of P for a given Q such that γk(P,Q) is small, though not

zero, can be intuitively understood by re-writing the result of Proposition 3.2 as

γk(P,Q) = γFk
(P,Q) = sup

f∈H

|Pf −Qf |
‖f‖H

,

where Pf :=
∫
X f dP. When P 6= Q, |Pf − Qf | can be large for some f ∈ H.

However, γk(P,Q) can be made small by selecting P such that the maximization

of |Pf−Qf |
‖f‖H over H requires an f with large ‖f‖H. More specifically, higher order

eigenfunctions of the kernel (ϕl for large l) have large RKHS norms, so, if they

are prominent in P and Q (i.e., highly non-smooth distributions), one can expect

γk(P,Q) to be small even when there exists an l for which |Pϕl−Qϕl| is large. To
this end, we need the following lemma, which we quote from [39, Lemma 4].

Lemma 3.26 ( [39]). Let F be the unit ball in an RKHS (H, k) defined on a com-

pact topological space, X , with k being measurable. Let ϕl ∈ L2(X , µ) be absolutely

bounded orthonormal eigenfunctions and λl be the corresponding eigenvalues (ar-

ranged in decreasing order for increasing l) of a positive definite integral operator

associated with k and a σ-finite measure, µ. Assume λ−1
l increases super-linearly

with l. Then, for f ∈ F where f(x) =
∑∞

j=1 f̃jϕj(x), f̃j := 〈f, ϕj〉L2(X ,µ), we have
∑∞

j=1 |f̃j | <∞ and for every ε > 0, ∃ l0 ∈ N such that |f̃l| < ε if l > l0.
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Theorem 3.27 (P 6= Q can have arbitrarily small γk). Suppose the conditions in

Lemma 3.26 hold. Then there exist probability measures P 6= Q defined on X such

that γk(P,Q) < ε for any arbitrarily small ε > 0.

Proof. Suppose q be the Radon-Nikodym derivative associated with Q w.r.t. the σ-

finite measure, µ (see Lemma 3.26). Let us construct p(x) = q(x)+αle(x)+τϕl(x)

where e(x) = 1X (x). For P to be a probability measure, the following conditions

need to be satisfied:
∫

X
[αle(x) + τϕl(x)] dµ(x) = 0, (3.16)

min
x∈X

[q(x) + αle(x) + τϕl(x)] ≥ 0.

Expanding e(x) and f(x) in the orthonormal basis {ϕl}∞l=1, we get

e(x) =
∞∑

l=1

ẽlϕl(x) and f(x) =
∞∑

l=1

f̃lϕl(x),

where ẽl := 〈e, ϕl〉L2(X ,µ) and f̃l := 〈f, ϕl〉L2(X ,µ). Therefore,

Pf −Qf =

∫

X
f(x) [αle(x) + τϕl(x)] dµ(x)

=

∫

X

[
αl

∞∑

j=1

ẽjϕj(x) + τϕl(x)

][ ∞∑

t=1

f̃tϕt(x)

]
dµ(x)

= αl

∞∑

j=1

ẽj f̃j + τ f̃l, (3.17)

where we used the fact that 〈ϕj, ϕt〉L2(X ,µ) = δjt (here, δ is used in the Kronecker

sense). Rewriting (3.16) and substituting for e(x) gives

∫

X
[αle(x) + τϕl(x)] dµ(x) =

∫

X
e(x)[αle(x) + τϕl(x)] dµ(x) = αl

∞∑

j=1

ẽ2j + τ ẽl = 0,

which implies

αl = − τ ẽl∑∞
j=1 ẽ

2
j

. (3.18)

Now, let us consider Pϕt −Qϕt = αlẽt + τδtl. Substituting for αl gives

Pϕt −Qϕt = τδtl − τ
ẽtẽl∑∞
j=1 ẽ

2
j

= τδtl − τρtl,
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where ρtl := ẽtẽl∑∞
j=1 ẽ

2
j
. By Lemma 3.26,

∑∞
l=1 |ẽl| < ∞ ⇒ ∑∞

j=1 ẽ
2
j < ∞, and

choosing large enough l gives |ρtl| < η, ∀ t, for any arbitrary η > 0. Therefore,

|Pϕt −Qϕt| > τ − η for t = l and |Pϕt −Qϕt| < η for t 6= l, which means P 6= Q.

In the following, we prove that γk(P,Q) can be arbitrarily small, though non-zero.

Recall that γk(P,Q) = sup‖f‖H≤1 |Pf − Qf |. Substituting (3.18) in (3.17)

and replacing |Pf −Qf | by (3.17) in γk(P,Q), we have

γk(P,Q) = sup
{f̃j}∞j=1

{
τ

∞∑

j=1

νjlf̃j :

∞∑

j=1

f̃ 2
j

λj
≤ 1

}
, (3.19)

where we used the definition of RKHS norm as ‖f‖2H :=
∑∞

j=1

f̃2j
λj

[81, Theorem

4.51] and νjl := δjl − ρjl. (3.19) is a convex quadratically constrained quadratic

program in {f̃j}∞j=1. Solving the Lagrangian yields f̃j =
νjlλj√∑∞
j=1 ν

2
jlλj

. Therefore,

γk(P,Q) = τ

√√√√
∞∑

j=1

ν2jlλj = τ

√√√√λl − 2ρllλl +
∞∑

j=1

ρ2jlλj
l→∞−→ 0,

because (i) by choosing sufficiently large l, |ρjl| < ε, ∀ j, for any arbitrary ε > 0,

and (ii) λl → 0 as l → ∞ [68, Theorem 2.10]. Therefore, we have constructed

P 6= Q such that γk(P,Q) < ε for any arbitrarily small ε > 0.

3.4 Discussion

In this chapter, we have presented various interpretations of γk and studied

the conditions (on k) under which it is a metric onM1
+(X ). We showed that apart

from universal kernels (in the sense of Steinwart [80]), a large family of bounded

continuous kernels induces a metric, γk onM
1
+(X ): (a) integrally strictly pd kernels

and (b) translation invariant kernels on Rd and Td that have the support of their

Fourier transform to be Rd and Zd respectively. We also showed that there exist

distinct distributions which will be considered close according to γk (whether or

not the kernel is characteristic), and thus may be hard to distinguish based on

finite samples.
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We now discuss how kernels on M1
+(X ) can be obtained from γk. As noted

by Gretton et al. [37, Section 4], and following [41], γk is a Hilbertian metric7 [8,

Section 3.3] on M1
+(X ): the associated kernel can be easily computed as8

K̃(P,Q) =

〈∫

X
k(·, x) dP(x),

∫

X
k(·, x) dQ(x)

〉

H

=

∫∫

X
k(x, y) dP(x) dQ(y),

where the pd kernel K̃ :M1
+(X )×M1

+(X ) → R is a dot-product kernel onM1
+(X ).

Using the results in [8, Chapter 3, Theorems 2.2 and 2.3], Gaussian and inverse

multi-quadratic kernels on M1
+(X ) can be defined as

K̃(P,Q) = exp
(
−σγ2k(P,Q)

)
, σ > 0 and K̃(P,Q) =

(
σ + γ2k(P,Q)

)−1
, σ > 0

respectively. Further work on Hilbertian metrics and positive definite kernels on

probability measures has been carried out by [40] and [27].

Bibliographic Notes

This chapter is based on joint work with Kenji Fukumizu, Arthur Gret-

ton, Gert Lanckriet and Bernhard Schölkopf, which appeared in [75, 78, 79]. The

dissertation author was the primary investigator and author of these papers.
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ρ2(x, x0) + ρ2(y, x0)− ρ2(x, y)− ρ2(x0, x0)
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Table 3.1: The table should be read as: If “Property” is satisfied on X , then k is
characteristic (or not) to Q(X ). M1

+(X ) is the set of Borel probability measures on
a topological space, X . When X = Rd, k(x, y) = ψ(x− y), where ψ is a bounded,
continuous pd function on Rd. ψ is the Fourier transform of a finite nonnegative
Borel measure, Λ, and Ω := supp(Λ). P1(Rd) := {P ∈ M1

+(R
d) : φP ∈ L1(Rd) ∪

L2(Rd), P ≪ λ and supp(P) is compact}, where φP is the characteristic function
of P and λ is the Lebesgue measure. P ≪ λ denotes that P is absolutely continuous
w.r.t. λ. For a radial kernel k on Rd, i.e., k(x, y) =

∫
[0,∞)

e−t‖x−y‖
2
2 dν(t), ν is a

finite nonnegative Borel measure on [0,∞). When X = Td, k(x, y) = ψ(x − y),
where ψ is a bounded, continuous pd function on Td. {Aψ(n)}n∈Zd are the Fourier
series coefficients of ψ which are nonnegative and summable (see (2.4) for details).

Summary of Main Results

Property Q(X ) Characteristic Reference

k is integrally strictly pd M1
+(X ) Yes Theorem 3.10

Ω = Rd M1
+(R

d) Yes Theorem 3.13

supp(ψ) is compact M1
+(R

d) Yes Corollary 3.14

Ω ( Rd, int(Ω) 6= ∅ P1(Rd) Yes Theorem 3.17

Ω ( Rd M1
+(R

d) No Theorem 3.13

supp(ν) 6= {0} M1
+(R

d) Yes Corollary 3.16

supp(ν) = {0} M1
+(R

d) No Corollary 3.16

Aψ(0) ≥ 0, Aψ(n) > 0, ∀n 6= 0 M1
+(T

d) Yes Theorem 3.19

∃n 6= 0 |Aψ(n) = 0 M1
+(T

d) No Theorem 3.19



4 Universality, Characteristic

Kernels and Other Notions

In Chapter 3, we have presented various characterizations of characteristic

kernels, which are easily checkable compared with characterizations proposed in

earlier literature [30, 31, 37]. Using all these characterizations, in this chapter, we

discuss and summarize the relation of characteristic kernels to other notions of pd

kernels like universal, strictly pd, integrally strictly pd and conditionally strictly

pd. Throughout this chapter, we assume X to be a Polish space,9 the reason for

which is discussed in footnote 12.

The chapter is organized as follows. In Section 4.1, we discuss in detail

the notion of universality, which is shown to be related to the RKHS embedding

of finite signed Borel measures. The relation between universal and characteristic

kernels is discussed in Section 4.2, while both these notions are related to strictly

pd, integrally strictly pd and conditionally strictly pd kernels in Section 4.3. This

is done by first reviewing all the existing characterizations for universal and char-

acteristic kernels, which is then used to study not only the relation between them

but also their relation to other notions of pd kernels. Since the existing character-

izations do not explain the complete relationship between all these various notions

of pd kernels, we raise questions at the end of each section that need to be ad-

dressed to obtain a complete understanding of the relationships between all these

notions, which are then addressed in Section 4.4 by deriving new results. A sum-

9A topological space (X , τ) is called a Polish space if the topology τ has a countable basis
and there exists a complete metric defining τ . An example of a Polish space is Rd endowed with
its usual topology.
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mary of the relation between all these notions of pd kernels is shown in Figure 4.1.

For example, all these notions of pd kernels are shown to be equivalent for many

popular kernels like Gaussian, Laplacian, inverse multi-quadratic, etc.

4.1 Universal Kernels

As mentioned in Chapter 1, RKHS based learning paradigm is broadly es-

tablished as an easy way to construct nonlinear algorithms from linear ones, by

embedding data points into an RKHS [68, 70]. In this approach to learning, the

kernel-based algorithms (for classification/regression) generally invoke the repre-

senter theorem [44, 67] and learn a function (in an RKHS) that has the represen-

tation,

f :=
∑

j∈Nn

cjk(·, xj), (4.1)

where Nn := {1, 2, . . . , n}, k : X × X → R is a symmetric pd kernel on X and

{cj : j ∈ Nn} ⊂ R are parameters typically obtained from training data, {xj :

j ∈ Nn} ⊂ X . As noted in [54], one can ask whether the function, f in (4.1)

approximates any real-valued target function arbitrarily well as the number of

summands increases without bound. This is an important question to consider

because if the answer is affirmative, then the kernel-based learning algorithm can

be consistent in the sense that for any target function, f ⋆, the discrepancy between

f (which is learned from the training data) and f ⋆ goes to zero (in some appropriate

sense) as the sample size goes to infinity. Since the linear hull of {k(·, x) : x ∈ X}
is dense in the RKHS, H associated with k [4], and assuming that the kernel-

based algorithm makes f “converge to an appropriate function” in H as n → ∞,

the above question of approximating f ⋆ arbitrarily well by f in (4.1) as n goes to

infinity is equivalent to the question of whether H is rich enough to approximate

any f ⋆ arbitrarily well (such an RKHS is referred to as a universal RKHS and the

corresponding kernel as a universal kernel). Depending on the choice of X , the

choice of target function space and the type of approximation, various notions of

universality—c-universality [80], cc-universality [12,54], c0-universality [13,77] and

Lp-universality [13, 81]—have been proposed and characterized in literature. In



54

the following sections, we define each of these notions of universality, review their

existing characterizations and summarize the relation between them.

4.1.1 c-universality

[80] proposed the notion of c-universality, which is defined as follows:

Definition 4.1 (c-universality). A continuous pd kernel k on a compact Hausdorff

space X is called c-universal if the RKHS, H induced by k is dense in C(X )

w.r.t. the supremum norm, i.e., for every function g ∈ C(X ) and all ǫ > 0, there

exists an f ∈ H such that ‖f − g‖∞ ≤ ǫ.

By applying the Stone-Weierstraß theorem [26, Theorem 4.45], Steinwart

[80, Theorem 9] provided sufficient conditions for a kernel to be c-universal—a

continuous kernel, k on a compact metric space, X is c-universal if the following

hold: (a) k(x, x) > 0, ∀ x ∈ X , (b) there exists an injective feature map Φ : X → ℓ2

of k with Φ(X ) = {Φn(X )}n∈N and (c) span{Φn : n ∈ N} is an algebra—using

which the Gaussian kernel is shown to be c-universal on every compact subset of

Rd. Micchelli et al. [54, Proposition 1] related c-universality to the injective RKHS

embedding of finite signed Borel measures by showing that k is c-universal if and

only if

µ 7→
∫

X
k(·, x) dµ(x), µ ∈Mb(X ), (4.2)

is injective.

4.1.2 cc-universality

One limitation in the notion of universality considered by Steinwart [80] is

that X is assumed to be compact, which excludes many interesting spaces, such

as Rd and infinite discrete sets. To overcome this limitation, Carmeli et al. [13,

Definition 2, Theorem 3] and Sriperumbudur et al. [77] introduced the following

notion of cc-universality which can handle non-compact Hausdorff spaces, X .

Definition 4.2 (cc-universality). A continuous pd kernel k on a Hausdorff space

X is said to be cc-universal if the RKHS, H induced by k is dense in C(X ) endowed
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with the topology of compact convergence, i.e., for any compact set Z ⊂ X , for any

g ∈ C(Z) and all ǫ > 0, there exists an f ∈ H|Z such that ‖f − g‖∞ ≤ ǫ, where

H|Z := {f |Z : f ∈ H} is the restriction of H to Z and f |Z is the restriction of f

to Z.

Carmeli et al. [13, Theorem 3, Proposition 3 and Theorem 4] showed that

a bounded continuous pd kernel, k is cc-universal if and only if the following

embedding is injective for all µ ∈Mbc(X ) and some p ∈ [1,∞):

f 7→
∫

X
k(·, x)f(x) dµ(x), f ∈ Lp(X , µ). (4.3)

In addition, they [13, Remark 1] showed that k being cc-universal is equivalent to

it being universal in the sense of [54] and [12]: for any compact Z ⊂ X , the set

K̃(Z) := cl(span{k(·, y) : y ∈ Z}) is dense in C(Z) in the supremum norm, which

is shown by Micchelli et al. [54, Proposition 1] to be equivalent to the following

embedding being injective:

µ 7→
∫

Z
k(·, x) dµ(x), µ ∈Mb(Z). (4.4)

Since (4.4) holds for any compact Z ⊂ X , the universality in the sense of [54]

and [12] is equivalent to the following embedding being injective:

µ 7→
∫

X
k(·, x) dµ(x), µ ∈Mbc(X ), (4.5)

where Mbc(X ) is the set of all compactly supported finite signed Borel measures

on X . Therefore, k being cc-universal is equivalent to the injectivity of (4.5)—in

Remark 4.9, we present a more direct proof of this result. It is clear from the

definitions of c- and cc-universality that these notions are equivalent when X is

compact, which also follows from their characterizations in (4.2) and (4.5).

As special cases, Micchelli et al. [54, Propositions 14, 15 and Theorem

17] showed that a bounded continuous translation invariant kernel on Rd, i.e.,

k(x, y) = ψ(x − y) is cc-universal if supp(Λ) has a non-zero interior (a weaker

condition of supp(Λ) being a uniqueness subset10 of Cd is sufficient for a translation

10A subset S of Cd is a uniqueness set if an entire function (see footnote 4) on Cd vanishes on
S then it is everywhere zero on Cd.
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invariant kernel on Rd to be cc-universal—see Proposition 14 of Micchelli et al.,

2006), while a radial kernel on Rd is cc-universal if and only if supp(ν) 6= {0}—
see (2.2) and (2.5) for the definitions of Λ and ν. Using these characterizations,

many popular kernels on Rd are shown to be cc-universal [54, Section 4]: Gaussian,

Laplacian, B2l+1-spline, sinc kernel, etc.

4.1.3 c0- and Lp-universality

Although cc-universality solves the limitation of c-universality by handling

non-compact X , the topology of compact convergence considered in cc-universality

is weaker than the topology of uniform convergence, i.e., a sequence of functions,

{fn} ⊂ C(X ) converging to f ∈ C(X ) in the topology of uniform convergence

ensures that they converge in the topology of compact convergence but not vice-

versa. So, the natural question to ask is whether we can characterize H that

are rich enough to approximate any f ⋆ on non-compact X in a stronger sense,

i.e., uniformly, by some g ∈ H. Carmeli et al. [13, Definition 2, Theorem 1]

and Sriperumbudur et al. [77] answered this through the notion of c0-universality,

defined as follows.

Definition 4.3 (c0-universality). A pd kernel, k is said to be a c0-kernel if it is

bounded with k(·, x) ∈ C0(X ), ∀ x ∈ X , where X is a locally compact Hausdorff

(LCH) space. A c0-kernel on an LCH space, X is said to be c0-universal if the

RKHS, H induced by k is dense in C0(X ) w.r.t. the supremum norm.11

Note that a notion of universality that is stronger than c0-universality can

be defined by choosing X to be a Hausdorff space, Cb(X ) to be the target space

and H being dense in Cb(X ) w.r.t. the supremum norm. However, this notion

of universality does not enjoy a nice characterization as c0-universality—see (4.6)

11Note that cc-universality (resp. c-universality) deals with X being a non-compact (resp.
compact) Hausdorff space, whereas c0-universality requires X to be an LCH space. While X being
Hausdorff ensures that it has an abundance of compact subsets (as required in cc-universality),
the stronger condition of X being an LCH space ensures that it has an abundance of continuous
functions that vanish outside compact sets, which follows from Tietze extension theorem [26,
Theorem 4.34]. In addition, this choice of X being an LCH space ensures the existence of
topological dual of C0(X ) through the Riesz representation theorem (Theorem C.3), which is
required in the characterization of c0-universality. See Proposition 4.8 for details.
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and (4.7) for the characterization of c0-universality—and therefore, we did not

include it in our study of relationships between various notions of pd kernels. See

Section 4.5 for details.

Before we present the characterization of c0-universality, we need the defi-

nition of Lp-universality [81].

Definition 4.4 (Lp-universality). A measurable and bounded kernel, k defined on

a Hausdorff space, X is said to be Lp-universal if the RKHS, H induced by k is

dense in Lp(X , µ) w.r.t. the Lp-norm, defined as ‖f‖p := (
∫
X |f(x)|p dµ(x))1/p,

for all Borel probability measures, µ, defined on X and some p ∈ [1,∞). Here

Lp(X , µ) is the Banach space of p-integrable µ-measurable functions on X .

Carmeli et al. [13, Theorem 1] showed that a c0-kernel k is c0-universal if

and only if it is Lp-universal, which by Theorem 2 and Proposition 3 of [13] is

equivalent to the injectivity of the following embedding for all µ ∈ Mb(X ) and

some p ∈ [1,∞):

f 7→
∫

X
k(·, x)f(x) dµ(x), f ∈ Lp(X , µ). (4.6)

We provide an alternate characterization for c0-universality in Section 4.4 (see

Proposition 4.8) that k is c0-universal if and only if the following embedding is

injective:

µ 7→
∫

X
k(·, x) dµ(x), µ ∈Mb(X ). (4.7)

As a special case, [13, Proposition 16] showed that a bounded continuous trans-

lation invariant k on Rd is c0-universal if and only if supp(Λ) = Rd. Examples of

c0-universal kernels on Rd include the Gaussian, Laplacian, B2l+1-spline, inverse

multiquadratics, Matérn class, etc.

4.1.4 Summary and Open Questions

The following statements summarize the relation between various notions

of universality, which are depicted in Figure 4.1.

• c- and cc-universality are related to the injective RKHS embedding of finite

signed Borel measures, as shown in (4.2) and (4.5).
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• For an LCH space X , c0-universality implies cc-universality, which follows

from (4.3) and (4.6). The converse is however not true as a translation

invariant kernel on Rd is c0-universal if and only if supp(Λ) = Rd while

int(supp(Λ)) 6= ∅ is sufficient for cc-universality.

• When X is compact, then c-, cc- and c0-universality are equivalent.

• For an LCH space X , a c0-kernel is c0-universal if and only if it is Lp-universal.

• If k is a radial kernel on Rd, then k is cc-universal if and only if supp(ν) 6= {0}.

The following relationships need to be clarified, which we do in Section 4.4.

(A) As mentioned in the summary, c- and cc-universality are related to the injec-

tive RKHS embedding of finite signed Borel measures. However, the relation

between c0-universality and the injective RKHS embedding of finite signed

Borel measures as shown in (4.7) is not clear, which we clarify in Section 4.4.1.

(B) For an LCH space X (that is not compact), it is clear from the summary that

c0-universality implies cc-universality. Is there a case for which cc-universality

implies c0-universality? We address this in Section 4.4.3.

(C) While cc-universality is characterized for radial kernels on Rd, the charac-

terization of c0-universality for radial kernels is not known. In Section 4.4.3,

we provide a characterization of c0-universality for radial kernels on Rd and

then establish the relation between c0-universality and cc-universality for

such kernels.

4.2 Characteristic vs. Universal Kernels

In this section, we relate characteristic and universal kernels based on al-

ready existing characterizations for characteristic kernels and the results summa-

rized in Section 4.1.4 for universal kernels.12

12 While characteristic kernels ensure that P 7→
∫
X
k(·, x) dP(x) is injective where P is a Borel

probability measure on a topological space X , cc- and c0-universal kernels ensure that (4.4) and
(4.7) are injective where µ is a Radon measure. µ being a Radon measure follows from the
Riesz representation theorem (Theorem C.3), which is used to obtain the measure embedding
characterization for cc- and c0-universality. Therefore, in order not to differentiate between
Radon and Borel measures, we assumed X to be a Polish space (see Section C.1.1).
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c-universal kernels vs. Characteristic kernels: [37] related universal and characteris-

tic kernels by showing that if k is c-universal, then it is characteristic. The converse

is not true: as an example, a bounded continuous translation invariant kernel, k on

Td × Td is characteristic if and only if Aψ(0) ≥ 0, Aψ(n) > 0, ∀n ∈ Zd+ while the

following proposition shows that it is c-universal if and only if Aψ(n) > 0, ∀n ∈ Zd.

Proposition 4.5. Suppose k satisfies Assumption 3.18. Then k is c-universal if

and only Aψ(n) > 0, ∀n ∈ Zd, where Aψ is defined in (2.4).

Proof. (⇐ ) Consider
∫∫

Td k(x, y) dµ(x) dµ(y) for µ ∈Mb(Td)\{0}. We have

B :=

∫ ∫

Td

k(x, y) dµ(x) dµ(y) =

∫ ∫

Td

∑

n∈Zd

Aψ(n)e
i〈x−y,n〉 dµ(x) dµ(y)

(a)
=
∑

n∈Zd

Aψ(n)

∫

Td

ei〈x,n〉 dµ(x)

∫

Td

e−i〈y,n〉 dµ(y)

(b)
= (2π)2d

∑

n∈Zd

Aψ(n)Aµ(n)Aµ(n)

= (2π)2d
∑

n∈Zd

Aψ(n)|Aµ(n)|2, (4.8)

where Fubini’s theorem (Theorem C.1) is invoked in (a) and

Aµ(n) := (2π)−d
∫

Td

e−i〈n,x〉 dµ(x), n ∈ Zd, (4.9)

is used in (b). Note that Aµ is the Fourier transform of µ in Td. Since Aψ(n) >

0, ∀n ∈ Zd, we have B > 0, which means (4.2) is injective and therefore k is

c-universal.

(⇒ ) Proving necessity is equivalent to proving that if Aψ(n) = 0 for some n = n0,

then there exists µ ∈Mb(Td)\{0} such that
∫∫

Td k(x, y) dµ(x) dµ(y) = 0.

Let Aψ(n) = 0 for some n = n0. Define dµ(x) = 2α cos(〈x, n0〉) dx, α ∈
R\{0}. By (4.9), we get Aµ(n) = αδn0,n, where δ represents the Kronecker

delta. This means µ 6= 0. Using Aψ and Aµ in (4.8), it is easy to check that
∫∫

Td k(x, y) dµ(x) dµ(y) = 0, i.e.,
∫
Td k(·, x) dµ = 0, which means (4.2) is injective

and therefore, k is not c-universal.

cc-universal kernels vs. Characteristic kernels: cc-universal kernels on a non com-

pact Hausdorff space need not be characteristic: for example, a translation in-

variant kernel on Rd is cc-universal if int(supp(Λ)) 6= ∅ (see the summary in
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Section 4.1.4) while it is characteristic if and only if supp(Λ) = Rd (see Theo-

rem 3.13). Although, this example shows that a bounded continuous translation

invariant kernel on Rd is cc-universal if it is characteristic, it is not clear whether

such a relation holds on a general non-compact Hausdorff space (not necessarily

Rd). The following example shows that continuous kernels that are characteristic

on non-compact Hausdorff space, X also need not be cc-universal.

Example 4.6. Let X = N. Define k(x, y) = δxy, x, y ∈ X\{1}, k(x, 1) = 0 for any

x ∈ X , where δ represents the Kronecker delta. Suppose µ = δ1 ∈ Mbc(X )\{0},
where δj represents the Dirac measure at j. Then

∥∥∥∥
∫

X
k(·, x) dµ(x)

∥∥∥∥
2

H

= ‖k(·, 1)‖2
H
= k(1, 1) = 0,

which means there exists µ ∈Mbc(X )\{0} such that
∫
X k(·, x) dµ(x) = 0, i.e., (4.5)

is not injective and therefore k is not cc-universal. However, k is characteristic as

we show below.

Let P and Q be probability measures on X such that P =
∑

j∈N pjδj, Q =
∑

j∈N qjδj with pj ≥ 0, qj ≥ 0 for all j ∈ N and
∑

j∈N pj =
∑

j∈N qj = 1. Consider

B :=
∥∥∥
∫

X
k(·, x) d(P−Q)(X )

∥∥∥
2

H
=
∥∥∥
∑

j∈N
(pj − qj)k(·, j)

∥∥∥
2

H

=
∑

l,j∈N
(pl − ql)(pj − qj)k(l, j)

= (p1 − q1)
2k(1, 1) + 2(p1 − q1)

∑

j∈N\{1}
(pj − qj)k(j, 1)

+
∑

l,j∈N\{1}
(pj − qj)(pl − ql)k(j, l)

=
∑

j∈N\{1}
(pj − qj)

2.

Suppose B = 0, which means pj = qj , ∀ j ∈ N\{1}. Since
∑

j∈N pj =
∑

j∈N qj =

1, we have p1 = q1 and so P = Q, i.e., (3.1) is injective and therefore k is

characteristic.

c0-universal kernels vs. Characteristic kernels: [30, 31] have shown that a measur-

able and bounded kernel, k is characteristic if and only if the direct sum of H
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and R is dense in Lp(X ,P) for all P ∈ M1
+(X ) and for some p ∈ [1,∞). Using

this, it is easy to see that if H is dense in Lp(X ,P) for all P ∈ M1
+(X ) and for

some p ∈ [1,∞), then k is characteristic. Based on the results summarized in

Section 4.1.4, it is clear that for an LCH space, X , if k is c0-universal, which

means k is Lp-universal, then H is dense in Lp(X ,P) for all P ∈ M1
+(X ) and for

some p ∈ [1,∞) and therefore is characteristic. In Section 4.4, we provide an

alternate proof for this relation between c0-universal and characteristic kernels by

answering (A). Clearly, the converse is not true, i.e., a c0-kernel that is character-

istic need not be c0-universal (see Proposition 4.10 and footnote 14). However, for

bounded continuous translation invariant kernels on Rd, the converse is true, i.e., a

c0-kernel that is characteristic is also c0-universal. This is because of the fact that

a translation invariant kernel on Rd is characteristic if and only if supp(Λ) = Rd

(see Theorem 3.13), which is also the same characterization summarized in Sec-

tion 4.1.4 for c0-universal kernels.

Summary: The following statements summarize the relation between universal and

characteristic kernels, which are depicted in Figure 4.1.

• For c0-kernels defined on an LCH space, X , Lp-universal ⇔ c0-universal ⇒
characteristic. But in general, c0-kernels that are characteristic need not be

c0-universal. However, for bounded continuous translation invariant kernels

on Rd, c0-universal ⇔ characteristic.

• When X is compact, c-universal ⇒ characteristic but not vice-versa.

• For bounded continuous translation invariant kernels on Rd, characteristic ⇒
cc-universal but not vice-versa. However, on general non-compact Hausdorff

spaces, continuous kernels that are characteristic need not be cc-universal.

Open questions: The following relationship need to be clarified, which we do in

Section 4.4.

(D) While the relation between universal and characteristic kernels that are trans-

lation invariant on Rd is clear (see the summary above), the characterization

of c0-universal kernels that are radial on Rd is not known and therefore the
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relation between characteristic and universal kernels that are radial on Rd is

not clear. We address this in Section 4.4.3.

4.3 Universal & Characteristic Kernels vs. Oth-

ers

In this section, we relate characteristic kernels and various notions of uni-

versal kernels to strictly pd, integrally strictly pd and conditionally strictly pd

kernels. Before that, we summarize the relation between strictly pd, integrally

strictly pd and conditionally strictly pd kernels. While integrally strictly pd ker-

nels are strictly pd (see Proposition 2.6), the converse is not true, which follows

from [81, Proposition 4.60, Theorem 4.62]. However, if X is a finite set, then k

being strictly pd also implies it is integrally strictly pd. From the definitions of

strictly pd and conditionally strictly pd kernels, it is clear that a strictly pd kernel

is conditionally strictly pd but not vice-versa.

Universal kernels vs. Strictly pd kernels: [13, Corollary 5] showed that cc-universal

kernels are strictly pd, which means c0-universal kernels are also strictly pd (as

c0-universal ⇒ cc-universal from Section 4.1.4). This means, when X is com-

pact Hausdorff, c-universal kernels are strictly pd, which matches with the result

in [81, Definition 4.53, Proposition 4.54, Example 4.11].

Conversely, a strictly pd c0-kernel on an LCH space need not be c0-universal.

This follows from Theorem 4.62 in [81] which shows that there exists a bounded

strictly pd kernel, k on X := N∪ {0} with k(·, x) ∈ C0(X ), ∀ x ∈ X such that k is

not Lp-universal (which from Section 4.1.4 means k is not c0-universal). Similarly,

when X is compact, the converse is not true, i.e., continuous strictly pd kernels

need not be c-universal which follows from the results due to [17] and [58] for Taylor

kernels [81, Lemma 4.8, Corollary 4.57]—refer to [81, Section 4.7, p. 161] for more

details.13 While it is not evident whether a continuous strictly pd kernel is in gen-

13Another example of continuous strictly pd kernels that are not c-universal is as follows. By
Proposition 4.5, a bounded continuous translation invariant kernel on T×T is c-universal if and
only if Aψ(n) > 0, ∀n ∈ Z. Therefore, by Theorem C.6, a strictly pd kernel on T need not be
c-universal.
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eral cc-universal or not, it is indeed the case for translation invariant kernels that

are continuous, bounded and integrable on Rd, i.e., k(x, y) = ψ(x− y), x, y ∈ Rd,

where ψ ∈ Cb(Rd) ∩ L1(Rd). This follows from Theorem 6.11 and Corollary 6.12

of [91] that if ψ ∈ Cb(Rd)∩L1(Rd) is strictly pd, then int(supp(Λ)) 6= ∅, which from

Section 4.1.4 means k is cc-universal. Similarly, when the kernel is radial on Rd,

then strictly pd kernels are cc-universal. This follows from Theorem 7.14 of [91],

which shows that a radial kernel on Rd is strictly pd if and only if supp(ν) 6= {0},
and therefore cc-universal (from Section 4.1.4). On the other hand, when X is

finite, all these notions of universal and strictly pd kernels are equivalent, which

follows from the result due to Carmeli et al. [13, Corollary 5] that cc-universal and

strictly pd kernels are the same when X is finite.

Characteristic kernels vs. Strictly pd kernels: Since bounded continuous trans-

lation invariant characteristic kernels on Rd are equivalent to c0-universal ker-

nels (see Section 4.2), it is clear that they are strictly pd. However, the con-

verse is not true: for example, the sinc-squared kernel, which has supp(Λ) =

[−σ, σ]d ( Rd is strictly pd [91, Theorem 6.11], while it is not characteristic.

However, the converse is true for radial kernels on Rd, which follows from Corol-

lary 3.16 and [91, Theorem 7.14]. Based on Example 4.6, it can be shown that

in general, characteristic kernels on a non-compact space (not necessarily Rd)

need not be strictly pd: in Example 4.6, k is characteristic but is not strictly

pd because for (a1, . . . , an) = (1, 0, . . . , 0) and (x1, . . . , xn) = (1, . . . , n), we have
∑n

l,j=1 alajk(xl, xj) = a21k(1, 1) + 2a1
∑n

j=2 ajk(j, 1) +
∑n

j=2 a
2
j = 0. Note that Ex-

ample 4.6 holds even if X is a compact subset of N. Therefore, when X is compact

Hausdorff, a characteristic kernel need not be strictly pd. However, for bounded

continuous translation invariant kernels on T, a characteristic kernel is also strictly

pd, while the converse is not true: Theorem 3.19 (also see [31, Theorem 8]) shows

that k on T×T is characteristic if and only if Aψ(0) ≥ 0, Aψ(n) > 0, ∀n ∈ Z\{0},
which by Theorem C.6 is strictly pd, while the converse is clearly not true.

Characteristic kernels vs. Integrally strictly pd kernels: Theorem 3.10 shows that

integrally strictly pd kernels are characteristic, while the converse in general is not



64

true.14 When k is translation invariant on Rd, however the converse holds, which

is due to the fact that if k is characteristic, then supp(Λ) = Rd (see Theorem 3.13),

which ensures that k is integrally strictly pd.

Summary: The following statements summarize the relation of universal and char-

acteristic kernels to strictly pd kernels, integrally strictly pd and conditionally

strictly pd, which are depicted in Figure 4.1.

• c-, cc- and c0-universal kernels are strictly pd and are therefore conditionally

strictly pd, while the converse is not true in general. When X is finite, then

c-, cc- and c0-universal kernels are equivalent to strictly pd kernels.

• Bounded, continuous, integrable, strictly pd translation invariant kernels on

Rd are cc-universal. Radial kernels on Rd are strictly pd if and only if they

are cc-universal.

• For a general non-compact Hausdorff space, characteristic kernels need not

be strictly pd and vice-versa. However, bounded continuous translation in-

variant kernels on Rd or T that are characteristic are strictly pd but the

converse is not true. The converse also holds if k is radial on Rd.

• Integrally strictly pd kernels are characteristic. Though the converse is not

true in general, it holds if the kernel is bounded, continuous and translation

invariant on Rd.

Open questions: The following questions need to be clarified, which is done in

Section 4.4.

(E) While the relation of universal kernels to strictly pd and conditionally strictly

pd kernels is clear from the above summary, the relation between universal

and integrally strictly pd kernels is not known, which we establish in Sec-

tion 4.4.2.

(F) When X is a finite set, it is easy to see that characteristic and condition-

ally strictly pd kernels are equivalent (see Section 4.4.4). However, their

14By Example 4.6, it is clear that for µ = δ1 ∈ Mb(X )\{0},
∫∫

X
k(x, y) dµ(x) dµ(y) = k(1, 1) =

0, where δ1 represents the Dirac measure at 1. Therefore k is not integrally strictly pd but is
characteristic.
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relationship is not clear for a general measurable space, which we clarify in

Section 4.4.4.

(G) As summarized above, radial kernels on Rd are strictly pd if and only if

they are cc-universal (which are also characteristic). However, the relation

between all the other notions of pd kernels—c0-universal, strictly pd and

integrally strictly pd—is not known, which is addressed in Section 4.4.3.

4.4 New Results

In this section, we address the open questions, (A)–(G) mentioned in Sec-

tions 4.1–4.3 to understand the complete relationship between various notions of

pd kernels.

4.4.1 c0-universality and RKHS Embedding of Measures

As mentioned in Section 4.1, Micchelli et al. [54] have established the re-

lation of c-universality and cc-universality to injective RKHS embedding of finite

signed Borel measures (shown in (4.2) and (4.5)) through a simple application of

the Hahn-Banach theorem (see Theorem 4.7). The following result in Proposi-

tion 4.8 provides a measure embedding characterization (shown in (4.7)) for c0-

universality, which is also obtained as a simple application of the Hahn-Banach

theorem, and therefore addresses the open question in (A). Before we state Propo-

sition 4.8, we present the Hahn-Banach theorem, which we quote from [65, Theorem

3.5 and the remark following Theorem 3.5].

Theorem 4.7 (Hahn-Banach). Suppose A is a subspace of a locally convex topo-

logical vector space Y . Then A is dense in Y if and only if A⊥ = {0}, where

A⊥ := {T ∈ Y ′ : ∀x ∈ A, T (x) = 0}.

Here Y ′ denotes the topological dual of Y .

The following result, which presents a necessary and sufficient condition for

k to be c0-universal hinges on the above theorem, where we choose A to be the
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RKHS, H and Y to be C0(X ) for which Y ′ is known through the Riesz represen-

tation theorem.

Proposition 4.8 (c0-universality and RKHS embedding of measures). Suppose X
is an LCH space with the kernel, k being bounded and k(·, x) ∈ C0(X ), ∀ x ∈ X .

Then k is c0-universal if and only if the embedding,

µ 7→
∫

X
k(·, x) dµ(x), µ ∈Mb(X ), (4.10)

is injective.

Proof. By definition, k is c0-universal if H is dense in C0(X ). We now invoke

Theorem 4.7 to characterize the denseness of H in C0(X ), which means we need

to consider the dual C ′
0(X ) := (C0(X ))′ of C0(X ). By the Riesz representation

theorem [26, Theorem 7.17], C ′
0(X ) =Mb(X ) in the sense that there is a bijective

linear isometry µ 7→ Tµ from Mb(X ) onto C ′
0(X ), given by the natural mapping,

Tµ(f) =
∫
X f dµ, f ∈ C0(X ). Therefore, by Theorem 4.7, H is dense in C0(X ) if

and only if H⊥ := {µ ∈ Mb(X ) : ∀ f ∈ H,
∫
X f dµ = 0} = {0}. From Lemma 3.1,

we have H⊥ = {µ ∈Mb(X ) :
∫
X k(·, x) dµ(x) = 0} and therefore the result follows

from Theorem 4.7.

Remark 4.9. (a) When X is compact, C0(X ) coincides with C(X ), and therefore

the result in (4.10) matches with the one in (4.2), derived by [54].

(b) The characterization of cc-universality, shown in (4.5) can also be directly ob-

tained as a simple application of Theorem 4.7, wherein the proof is similar to that

of Proposition 4.8 except that we need to consider the dual of C(X ) endowed with

the topology of compact convergence (a locally convex topological vector space) to

characterize the denseness of H in C(X ). It is known [42] that C ′(X ) = Mbc(X )

in the sense that there is a bijective linear isometry µ 7→ Tµ from Mbc(X ) onto

C ′(X ), given by the natural mapping, Tµ(f) =
∫
X f dµ, f ∈ C(X ). The rest of the

proof is verbatim with Mb(X ) replaced by Mbc(X ).

(c) Comparing (4.10) and (3.1), it is clear that c0-universal kernels are character-

istic while the converse is not true, which matches with the result in Section 4.2.
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4.4.2 Universal vs. Integrally Strictly Positive Definite Ker-

nels

In this section, we address the open question (E) through the following

result which shows that k is c0-universal if and only if it is integrally strictly pd.

Proposition 4.10 (c0-universal and integrally strictly pd kernels). Suppose the

assumptions in Proposition 4.8 hold. Then, k is c0-universal if and only if it is

integrally strictly pd.

Proof. (⇐ ) Suppose k is not c0-universal. By Proposition 4.8, there exists µ ∈
Mb(X )\{0} such that

∫
X k(·, x) dµ(x) = 0, which implies ‖

∫
X k(·, x) dµ(x)‖H = 0.

This means

0 =
〈∫

X
k(·, x) dµ(x),

∫

X
k(·, x) dµ(x)

〉
H

(e)
=

∫ ∫

X
k(x, y) dµ(x) dµ(y),

i.e., k is not integrally strictly pd, where (e) follows from Lemma 3.1.

(⇒ ) Suppose k is not integrally strictly pd, i.e., there exists µ ∈ Mb(X )\{0}
such that

∫∫
X k(x, y) dµ(x) dµ(y) = 0, i.e., ‖

∫
X k(·, x) dµ(x)‖H = 0, which implies

∫
X k(·, x) dµ(x) = 0. Therefore, the embedding in (4.10) is not injective, which by

Proposition 4.8 implies that k is not c0-universal.

4.4.3 Radial kernels on Rd

In this section, we address the open questions (B), (C), (D) and (G) by

showing that all the notions of universality and characteristic kernels are equivalent

to strictly pd kernels.

Proposition 4.11 (All notions are equivalent for radial kernels on Rd). Suppose

k is radial on Rd. Then the following conditions are equivalent.

(a) supp(ν) 6= {0}.

(b) k is integrally strictly pd.

(c) k is c0-universal.
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(d) k is cc-universal.

(e) k is strictly pd.

(f) k is characteristic.

Proof. Note that (b) ⇔ (c) ⇒ (d) ⇔ (e) which follows from Proposition 4.10 and

results summarized in Sections 4.1.4 and 4.3. Theorem 7.14 in [91] ensures that

(e) ⇒ (a). (a) ⇒ (f) follows from Corollary 3.16. Now, we show (a) ⇒ (b).

Consider
∫∫

Rd k(x, y) dµ(x) dµ(y) with k as in (2.5), given by

B :=

∫ ∫

Rd

k(x, y) dµ(x) dµ(y)

=

∫ ∫

Rd

∫ ∞

0

e−t‖x−y‖
2
2 dν(t) dµ(x) dµ(y)

(⋆)
=

∫ ∞

0

(∫ ∫

Rd

e−t‖x−y‖
2
2 dµ(x) dµ(y)

)
dν(t)

(♣)
=

∫ ∞

0

1

(4πt)d/2

(∫

Rd

|µ̂(ω)|2e−
‖ω‖22
4t dω

)
dν(t)

(♠)
=

∫

Rd

|µ̂(ω)|2
(∫ ∞

0

1

(4πt)d/2
e−

‖ω‖22
4t dν(t)

)
dω, (4.11)

where Fubini’s theorem (Theorem C.1) is invoked in (⋆) and (♠), while we used

(2.7) in (♣), where we set ψ(x) = e−t‖x‖
2
2 with dΛ(ω) = (4πt)−d/2e−‖ω‖22/4t dω.

Since supp(ν) 6= {0}, the inner integral in (4.11) is positive for every ω ∈ Rd and

so B > 0, which means k is integrally strictly pd.

4.4.4 Characteristic vs. Conditionally Strictly pd Kernels

In this section we address the open question (F) which is about the re-

lation of characteristic kernels to conditionally strictly pd kernels. As shown in

Section 4.3, although the relation between universal and conditionally strictly pd

kernels straightforwardly follows from universal kernels being strictly pd, which in

turn are conditionally strictly pd, such an implication is not possible in the case

of characteristic kernels as they are not in general strictly pd (see Example 4.6).

However, the following result establishes the relation between characteristic and

conditionally strictly pd kernels.
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Proposition 4.12. If k is characteristic, then it is conditionally strictly pd.

Proof. Suppose k is not conditionally strictly pd. This means for some n ≥ 2 and

for mutually distinct x1, . . . , xn ∈ X , there exists {αj}nj=1 6= 0 with
∑n

j=1 αj = 0

such that
∑n

l,j=1 αlαjk(xl, xj) = 0. Define I := {j : αj > 0}, P := β−1
∑

j∈I αjδxj

and Q := −β−1
∑

j /∈I αjδxj , where β :=
∑

j∈I αj . It is easy to see that P and Q

are distinct Borel probability measures on X . Then, we have

∥∥∥∥
∫

X
k(·, x) d(P−Q)(x)

∥∥∥∥
2

H

= β−2

∥∥∥∥∥
n∑

j=1

αjk(·, xj)
∥∥∥∥∥
H

= β−2
n∑

l,j=1

αlαjk(xl, xj) = 0.

So, there exist P 6= Q such that
∫
X k(·, x) d(P−Q)(x) = 0, i.e., k is not character-

istic.

The converse to Proposition 4.12 in general is however not true: we showed

in Section 4.3 that strictly pd kernels are conditionally strictly pd but need not

be characteristic and so conditionally strictly pd kernels need not have to be char-

acteristic. In the following, we present a concrete example to show the same—a

similar example is used to prove Theorem 4.62 in [81], which shows that c0-kernels

that are strictly pd need not be c0-universal.

Example 4.13. Let X = N ∪ {0}. Define k(0, 0) =
∑

n∈N b
2
n, k(m,n) = δmn and

k(n, 0) = bn for m,n ≥ 1, where {bn}n≥1 ⊂ (0, 1) and
∑

n∈N bn = 1. Let n ≥ 2 and

α := (α0, . . . , αn) ∈ Rn+1 be a vector with α 6= 0 such that
∑n

j=0 αj = 0. Consider

B :=

n∑

l,j=0

αlαjk(l, j) = α2
0k(0, 0) + 2

n∑

j=1

αjα0k(j, 0) +

n∑

l,j=1

αlαjk(l, j)

= α2
0

∑

j∈N
b2j + 2α0

n∑

j=1

αjbj +
n∑

j=1

α2
j

= = α2
0

∑

j∈N
b2j +

n∑

j=1

αj(2α0bj + αj).

If α0 = 0, then B =
∑n

j=1 α
2
j > 0 since we assumed α 6= 0. Suppose α0 6= 0. Then

B ≥ α2
0

∑

j∈N
b2j +

n∑

j=1

α∗
j (2α0bj + α∗

j ), (4.12)
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where

(α∗
1, . . . , α

∗
n) = argmin

{
n∑

j=1

αj(2α0bj + αj) :
n∑

j=1

αj = −α0

}
. (4.13)

Note that (α∗
1, . . . , α

∗
n) is unique as the objective in (4.13) is strictly convex, which

is minimized over a convex set. To solve (4.13), let us consider the Lagrangian,

given as

L(α1, . . . , αn, λ) =

n∑

j=1

αj(2α0bj + αj)− λ
( n∑

j=1

αj + α0

)
,

where λ ≥ 0. Differentiating L w.r.t. αj and setting it to zero yields α∗
j = (λ −

2α0bj)/2. Since
∑n

j=1 α
∗
j = −α0, we have λ = 2α0(a−1)

n
, where a :=

∑n
j=1 bj.

Substituting for λ in α∗
j , we have

α∗
j =

α0(a− 1− nbj)

n
, j ∈ Nn.

Substituting for α∗
j in (4.12) gives

B ≥ α2
0

∑

j∈N
b2j +

α2
0(a− 1)2

n
− α2

0

n∑

j=1

b2j = α2
0

∞∑

j=n+1

b2j +
α2
0(
∑n

j=1 bj − 1)2

n
> 0.

Consequently, we have B > 0 in any case, and therefore k is conditionally strictly

pd. In the following, we however show that k is not characteristic.

Let P = δ0 and Q =
∑n

j=1 bjδj. Clearly P 6= Q. Consider

∥∥∥
∫

X
k(·, x) d(P−Q)(x)

∥∥∥
2

H
=
∥∥∥k(·, 0)−

∑

j∈N
k(·, j)bj

∥∥∥
2

H

= k(0, 0)− 2
∑

j∈N
k(j, 0)bj +

∑

l,j∈N
k(l, j)blbj

=
∑

j∈N
b2j − 2

∑

j∈N
b2j +

∑

j∈N
b2j = 0.

This implies (3.1) is not injective and therefore k is not characteristic.

When X is finite, then the converse to Proposition 4.12 holds, i.e., condition-

ally strictly pd kernels are characteristic, which is shown as follows. Let X = Nn.

Suppose k is conditionally strictly pd, i.e., for any n ≥ 2, (α1, . . . , αn) 6= (0, . . . , 0)
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with
∑n

j=1 αj = 0, and all distinct x1, . . . , xn ∈ X , we have
∑n

l,j=1 αlαjk(xl, xj) >

0. Let I := {j : αj > 0}. Define P := β−1
∑

j∈I αjδj and Q := −β−1
∑

j /∈I αjδj ,

where β :=
∑

j∈I αj and P 6= Q. Then

∥∥∥∥
∫

X
k(·, x) d(P−Q)(x)

∥∥∥∥
2

H

= β−2
n∑

l,j=1

αlαjk(l, j) > 0

and therefore k is characteristic.

4.5 cb-universality

As mentioned in Section 4.1.3, the definition of c0-universality deals with

H being dense in C0(X ) w.r.t. the supremum norm, where X is an LCH space.

Although the notion of c0-universality addresses limitations associated with both

c- and cc-universality, it only approximates a subset of C(X ), i.e., it cannot deal

with functions in C(X )\C0(X ). This limitation can be addressed by considering a

larger class of functions to be approximated.

To this end, one can consider a notion of universality that is stronger than

c0-universality: k is said to be cb-universal if its corresponding RKHS,H is dense in

Cb(X ), the space of bounded continuous functions on a topological space, X (note

that C0(X ) ⊂ Cb(X )). This notion of cb-universality may be more applicable

in learning theory than c0-universality as the target function, f ⋆ can belong to

Cb(X ) (which is a more natural assumption) instead of it being restrained to

C0(X ) (note that C0(X ) only contains functions that vanish at infinity). Similar to

Proposition 4.8, the following theorem provides a necessary and sufficient condition

for k to be cb-universal. Before we state the result, we need some definitions.

A set function is a function defined on a family of sets, and has values in

[−∞,+∞]. A set function µ defined on a family τ of sets is said to be finitely

additive if ∅ ∈ τ , µ(∅) = 0 and µ(∪nl=1Al) =
∑n

l=1 µ(Al), for every finite family

{A1, . . . , An} of disjoint subsets of τ such that ∪nl=1Al ∈ τ . A field of subsets of

a set X is a non-empty family, Σ, of subsets of X such that ∅ ∈ Σ, X ∈ Σ, and

for all A,B ∈ Σ, we have A ∪ B ∈ Σ and B\A ∈ Σ. An additive set function µ

defined on a field Σ of subsets of a topological space X is said to be regular if for
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each A ∈ Σ and ǫ > 0, there exists B ∈ Σ whose closure is contained in A and

there exists C ∈ Σ whose interior contains A such that |µ(D)| < ǫ for every D ∈ Σ

with D := C\B.

Proposition 4.14 (cb-universality and RKHS embedding of set functions). Sup-

pose X is a normal topological space and Mrba(X ) is the space of all finitely ad-

ditive, regular, bounded set functions defined on the field generated by the closed

sets of X . Then, a bounded continuous kernel, k is cb-universal if and only if the

embedding,

µ 7→
∫

X
k(·, x) dµ, µ ∈Mrba(X ), (4.14)

is injective.

Proof. The proof is very similar to that of Proposition 4.8, wherein we identify

(Cb(X ))′ ∼= Mrba(X ) such that T ∈ (Cb(X ))′ and µ ∈ Mrba(X ) satisfy T (f) =
∫
X f dµ, f ∈ Cb(X ) [24, p. 262]. Here, ∼= represents the isometric isomorphism.

The rest of the proof is verbatim with Mbf(X ) replaced by Mrba(X ).

Note that Mrba(X ) does not contain any measure—though a set function

in Mrba(X ) can be extended to a measure—as measures are countably additive

and defined on a σ-field. Since µ in Proposition 4.14 is not a measure but a

finitely additive set function defined on a field, it is not clear how to deal with

the integral in (4.14). Because of the technicalities involved in dealing with set

functions, the analysis of cb-universality and its relation to other notions considered

in Sections 4.1–4.3 is not clear, although it is an interesting problem to be resolved

because of its applicability in learning theory.
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(a)
(b)

(c)
(d)

Figure 4.1: Summary of the relations between various families of kernels: The im-
plications shown without any reference are based on the review of existing results
(see Sections 4.1–4.3) while the ones with a reference are based on new results
derived in Section 4.4 that addresses the open questions (A)–(G). The implica-
tions which are still open are shown with “?”. (a) X is an LCH space. (b) The
implications shown hold for any compact Hausdorff space, X . When X = T and
k is translation invariant on T (see (2.4)), then k being characteristic implies it
is strictly pd (spd), which is shown as ♣. (c) The implications shown hold for
translation invariant kernels on Rd (see (2.2)). If ψ ∈ Cb(Rd) ∩ L1(Rd), then the
implication shown as (♠) holds, i.e., spd kernels are cc-universal. Otherwise, it is
not clear whether the implication holds. (d) Radial kernels on Rd (see (2.5)).



5 Integral Probability Metrics,

φ-Divergences and MMD

In Chapters 3 and 4, we discussed the question of when is k characteristic

so that γk (i.e., MMD) is a metric on the space of probability measures. Many

distance measures on probabilities have been studied in literature, of which two

popular families are: (i) Integral probability metrics and (ii) φ-divergences. The

goal of this chapter is to study the relation of MMD to these families, in particular

the advantages and disadvantages of MMD over these families. We briefly discussed

the relation between MMD and IPMs in Chapter 3 (see Proposition 3.2), wherein

we showed that MMD is obtained by choosing F = Fk := {f : ‖f‖H ≤ 1} in (3.2).

In this chapter, we elaborate on this result by considering the question of “What

are the advantages of choosing F = Fk in (3.2) compared to the other choices of

F?”

5.1 Introduction

The notion of distance between probability measures has found many ap-

plications in probability theory and mathematical statistics. One of the widely

studied and well understood family of distance measures (in fact divergences)

between probabilities is the Ali-Silvey distance [1], also called the Csiszár’s φ-

divergence [15], which is defined as

Dφ(P,Q) :=

∫

X
φ

(
dP

dQ

)
dQ if P ≪ Q,
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where X is a measurable space and φ : [0,∞) → (−∞,∞] is a convex func-

tion. P ≪ Q denotes that P is absolutely continuous w.r.t. Q. Well-known

distance/divergence measures obtained by appropriately choosing φ include the

Kullback-Leibler (KL) divergence (φ(t) = t log t), Hellinger distance (φ(t) = (
√
t−

1)2), χ2-divergence (φ(t) = (t− 1)2) and total variation distance (φ(t) = |t− 1|).
Another popular family—particularly in probability theory and mathemat-

ical statistics—of distance measures on probabilities is the integral probability met-

rics (IPM) [55]—also called probability metrics with a ζ-structure [96]—defined

as

γF(P,Q) := sup
f∈F

∣∣∣∣
∫

X
f dP−

∫

X
f dQ

∣∣∣∣ , (5.1)

where F in (5.1) is a class of real-valued bounded measurable functions on X (see

Appendix A for the discussion on the relation between IPMs and φ-divergences

wherein it is shown that IPMs are essentially different from φ-divergences). By

appropriately choosing F, various popular distance measures can be obtained:

(a) Kantorovich metric, Wasserstein distance and Fortet-Mourier metric: By

setting F = FW := {f : ‖f‖L ≤ 1} in (5.1) yields the Kantorovich metric,

W where ‖f‖L is called the Lipschitz semi-norm of a bounded continuous

real-valued function f on a metric space, (X , ρ), with

‖f‖L := sup

{ |f(x)− f(y)|
ρ(x, y)

: x 6= y in X
}
.

The famous Kantorovich-Rubinstein theorem [23, Theorem 11.8.2] shows

that when X is separable, the Kantorovich metric is the dual representation

of Wasserstein distance [23, p. 420]—more specifically, the L1-Wasserstein

distance—defined as

W1(P,Q) := inf
µ∈L(P,Q)

∫
ρ(x, y) dµ(x, y), (5.2)

where P,Q ∈ {P :
∫
ρ(x, y) dP(x) <∞, ∀ y ∈ X} and L(P,Q) is the set of all

measures on X × X with marginals P and Q. The L1-Wasserstein distance

(and therefore the Kantorovich metric) has found applications in information

theory [35], mathematical statistics [59,96] and mass transportation problems

[60].
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The Fortet-Mourier metric [62, p. 17] is a generalization of the Kantorovich

metric, with F := {‖f‖c ≤ 1}, where

‖f‖c := sup

{ |f(x)− f(y)|
c(x, y)

: x 6= y in X
}

and c(x, y) = ρ(x, y)max(1, ρ(x, a)p−1, ρ(y, a)p−1), p ≥ 1 for some a ∈ X .

Note that when p = 1, the Fortet-Mourier metric is the same as the Kan-

torovich metric.

(b) Dudley metric: Choosing F = Fβ := {f : ‖f‖BL ≤ 1} in (5.1) yields the

dual-bounded Lipschitz distance—also called the Dudley metric, β—where

‖f‖BL := ‖f‖∞ + ‖f‖L,

with ‖f‖∞ := sup{|f(x)| : x ∈ X}. The Dudley metric is popularly used in

proving the convergence of probability measures with respect to the weak∗

(weak-star) topology on M1
+(X ) [23, Chapter 11].

(c) Total variation metric and Kolmogorov distance: γF is the total variation

metric, TV , when F = FTV := {f : ‖f‖∞ ≤ 1} while it is the Kolmogorov

distance when F = {1(−∞,t] : t ∈ Rd}. The Kolmogorov distance is popularly

used in proving the classical central limit theorem in Rd, and also appears

as the Kolmogorov-Smirnov statistic in hypothesis testing [71].

(d) Maximum mean discrepancy: γF is called the maximum mean discrepancy

(MMD) (see Proposition 3.2 and [37]) when F = Fk := {f : ‖f‖H ≤ 1},
where H represents an RKHS with a bounded and measurable reproducing

kernel, k. MMD is used in statistical applications including homogeneity

testing [37], independence testing [38], and testing for conditional indepen-

dence [30].

Having mentioned various examples of IPMs and φ-divergences, we now consider

the question of how is MMD related to other IPMs and φ-divergences, in particular

its advantages and disadvantages over these families. This comparison is carried

out on two fronts: (a) the ease of computation/estimation and (b) strength of the

distance/divergence measure, which are elaborated below.
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Computation and Estimation: The computation of φ-divergences and IPMs (in-

cluding MMD) is not straightforward (for all P and Q) as the integration in the

former case and maximization in the latter case are not easily doable (for all P

and Q)—in the case of MMD, the integral is not easily computable for all P, Q

and k (see (3.5)). One approach to compute these distances between P and Q

is to estimate them based on random samples drawn i.i.d. from them with the

hope that the estimate converges to the true distance with large sample sizes. As

aforementioned, this problem of estimating the distance between P and Q is also

important in statistical inference applications (e.g., distribution testing) where P

and Q are known only through random i.i.d. samples. For the estimators to be

useful in practice, they have to: (i) be consistent (resp. strongly consistent), i.e.,

suppose {θl} is a sequence of estimators of θ, then θl is consistent (resp. strongly

consistent) if θl converges in probability (resp. a.s.) to θ as l → ∞, (ii) exhibit

fast rate of convergence and (iii) be easy to implement. We use these properties

to compare MMD to φ-divergences and other IPMs.

The non-parametric estimation of φ-divergence, especially the KL-diverge-

nce is a well-studied problem (see [56, 57, 89, 90] and references therein). Wang

et al. [89] used a data-dependent space partitioning scheme and showed that the

non-parametric estimator of KL-divergence is strongly consistent, while its rate of

convergence can be arbitrarily slow depending on the distributions. In addition,

for increasing dimensionality of the data (in X = Rd), the method is increasingly

difficult to implement. On the other hand, by exploiting the variational repre-

sentation of φ-divergences, Nguyen et al. [56, 57] provided a strongly consistent

estimator of the KL-divergence by solving a convex quadratic program [10, Chap-

ter 4]. Although this approach is efficient and the dimensionality of the data is not

an issue, the rate of convergence of the estimator can be arbitrarily slow depending

on the distributions.

Since we are not aware of any work on the non-parametric estimation of

IPMs, in Section 5.2.1, we consider its estimation, in particular the Kantorovich

metric (and therefore the L1-Wasserstein distance), Dudley metric and MMD based

on finite samples drawn i.i.d. from P and Q. The empirical estimators—see (5.3)—
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of the Kantorovich distance and Dudley metric are obtained by solving convex

linear programs while that of MMD is computed in closed form, which means

MMD is computationally simpler to estimate than that of φ-divergences and other

IPMs.

Though various estimators may be used to estimate IPMs (and not just

the empirical estimators), we show in Section 5.2.2 that the empirical estimators

derived in Section 5.2.1 exhibit a nice connection to the problem of binary classifi-

cation. In Section 5.2.2, we first show that γF(P,Q) (resp. its empirical estimator)

is the negative of the optimal risk associated with a binary classifier that sepa-

rates the class conditional distributions, P and Q (resp. empirical distributions,

Pm and Qn), where the classification rule is restricted to F. In other words, the

Kantorovich metric, Dudley metric and MMD (and their empirical estimators)

can be understood as the negative of the optimal risk associated with a classifier

for which the classification rule is restricted to FW , Fβ and Fk respectively. We

then show that the empirical estimators of the Kantorovich and Dudley metrics

are related to the margins of the Lipschitz [88] and bounded Lipschitz classifiers,

respectively; and MMD to the Parzen window classifier [68, 70] (see kernel clas-

sification rule [22, Chapter 10]) and support vector machine. The significance of

this result is that the smoothness of the classifier is inversely related to the em-

pirical estimator of the IPM between class conditionals P and Q. Although this is

intuitively clear, our result provides a theoretical justification.

Next, in Section 5.2.3, we show that the empirical estimators derived in

Section 5.2.1 are strongly consistent and provide their rates of convergence, using

concentration inequalities and tools from empirical process theory [86]. Based

on these results, it will be clear that MMD exhibits fast rates of convergence

compared to that of other IPMs (and φ-divergences) and its rate of convergence

is independent of the dimension d (for X = Rd) unlike with other IPMs. Our

experimental results in Section 5.2.4 confirm the convergence theory discussed in

Section 5.2.3 and therefore demonstrate the practical viability of these estimators.

Since the total variation distance is also an IPM, in Section 5.2.5, we dis-

cuss its empirical estimator and show that it is not strongly consistent. Because
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of this, we provide new lower bounds for the total variation distance in terms of

the Kantorovich metric, Dudley metric and MMD, which can be consistently esti-

mated. These bounds also translate as lower bounds on the KL-divergence through

Pinsker’s inequality [25].

Strength of the Distance Measure: Let us consider the problem of estimating an

unknown density based on finite random samples drawn i.i.d. from it. The quality

of the estimate is measured by determining the distance between the estimated

density and the true density. Given two probability metrics, ρ1 and ρ2, one might

want to use the stronger 15 of the two to determine this distance, as the convergence

of the estimated density to the true density in the stronger metric implies the con-

vergence in the weaker metric, while the converse is not true. On the other hand,

one might need to use a metric of weaker topology (i.e., coarser topology) to show

convergence of some estimators, as the convergence might not occur w.r.t. a metric

of strong topology. Since the relation between W , β, TV and KL-divergence is

well-understood [33]—W and TV are stronger than β, KL-divergence is stronger

than TV (by Pinsker’s inequality), while no such relation exists between W and

TV , though they are comparable when X is bounded—this motivates to study

the relation between MMD and other IPMs to, e.g., determine which metrics are

stronger respectively weaker. In Section 5.3, we show that MMD, i.e., γk is weaker

than all these distance/divergence measures, wherein we just assume that k is

measurable and bounded on X . This means the topology induced by γk is coarser

than the ones induced by all these metrics on M1
+(X ). However, we show that if

k is c0-universal, then γk is equivalent to β, which is known to metrize the weak∗

(weak-star) topology (see Section 5.3 for details) on M1
+(X ) [33, 71].

5.2 Empirical Estimation of IPMs

Given {X(1)
1 , X

(1)
2 , . . . , X

(1)
m } and {X(2)

1 , X
(2)
2 , . . . , X

(2)
n }, which are i.i.d. sam-

ples drawn randomly from P and Q respectively, we propose to estimate γF(P,Q)

15Two metrics ρ1, ρ2 : X × X → R+ are said to be equivalent if ρ1(x, y) = 0 ⇔ ρ2(x, y) =
0, x, y ∈ X . On the other hand, ρ1 is said to be stronger than ρ2 if ρ1(x, y) = 0 ⇒ ρ2(x, y) =
0, x, y ∈ X but not vice-versa. If ρ1 is stronger than ρ2, then we say ρ2 is weaker than ρ1.
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by the following empirical estimator,

γF(Pm,Qn) = sup
f∈F

∣∣∣∣∣
N∑

j=1

Ỹjf(Xj)

∣∣∣∣∣ , (5.3)

where Pm := 1
m

∑m
j=1 δX(1)

j
and Qn := 1

n

∑N
j=1 δX(2)

j
represent the empirical dis-

tributions of P and Q respectively, N = m + n, Ỹj = 1
m

when Xj = X
(1)
j for

j = 1, . . . , m and Ỹm+j = − 1
n
when Xm+j = X

(2)
j for j = 1, . . . , n. Here, δx

represents the Dirac measure at x. The computation of γF(Pm,Qn) in (5.3) is

not straightforward for any arbitrary F. To obtain meaningful results, in Sec-

tion 5.2.1, we restrict ourselves to FW := {f : ‖f‖L ≤ 1}, Fβ := {f : ‖f‖BL ≤ 1}
and Fk := {f : ‖f‖H ≤ 1} and compute (5.3), wherein we show that the Kan-

torovich (and therefore L1-Wasserstein) and Dudley metrics can be estimated by

solving linear programs (see Theorems 5.1 and 5.3) whereas an estimator for MMD

can be obtained in closed form (Theorem 5.4; proved in [37]).

In Section 5.2.2, we present a novel interpretation of IPMs and their em-

pirical estimators (especially of Kantorovich metric, Dudley metric and MMD) by

relating them to binary classification.

5.2.1 Empirical Estimators of Kantorovich metric, Dudley

metric and MMD

Let us denote W := γFW
, β := γFβ

and γk := γFk
. The following results

present the empirical estimators of Kantorovich metric (i.e., W ), Dudley metric

(i.e., β) and MMD (i.e., γk).

Theorem 5.1 (Empirical estimator of Kantorovich metric). For all α ∈ [0, 1], the

following function solves (5.3) for F = FW :

fα(x) := α min
j=1,...,N

(a⋆j + ρ(x,Xj)) + (1− α) max
j=1,...,N

(a⋆j − ρ(x,Xj)), (5.4)

where

W (Pm,Qn) =
N∑

j=1

Ỹja
⋆
j , (5.5)
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and {a⋆j}Nj=1 solve the following linear program,

max
a1,...,aN

{
N∑

j=1

Ỹjaj : −ρ(Xl, Xj) ≤ al − aj ≤ ρ(Xl, Xj), ∀ j, l
}
. (5.6)

Proof. Consider W (Pm,Qn) = sup{∑N
j=1 Ỹjf(Xj) : ‖f‖L ≤ 1}. Note that

1 ≥ ‖f‖L = sup
x 6=x′

|f(x)− f(x′)|
ρ(x, x′)

≥ max
Xl 6=Xj

|f(Xl)− f(Xj)|
ρ(Xl, Xj)

,

which means

W (Pm,Qn) ≤ sup

{
N∑

j=1

Ỹjf(Xj) : max
Xl 6=Xj

|f(Xl)− f(Xj)|
ρ(Xl, Xj)

≤ 1

}

= sup

{
N∑

j=1

Ỹjf(Xj) : |f(Xl)− f(Xj)| ≤ ρ(Xl, Xj), ∀ j, l
}

= sup

{
N∑

j=1

Ỹjaj : |al − aj | ≤ ρ(Xl, Xj), ∀ j, l
}
,

where we have set aj := f(Xj). Therefore, we haveW (Pm,Qn) ≤
∑N

j=1 Ỹja
⋆
j , where

{a⋆j}Nj=1 solve the linear program in (5.6). Note that the objective in (5.6) is linear in

{aj}Nj=1 with linear inequality constraints and therefore by Theorem C.10, the opti-

mum lies on the boundary of the constraint set, which means maxXl 6=Xj

|a⋆l −a⋆j |
ρ(Xl,Xj)

= 1.

Therefore, by Lemma C.4, f on {X1, . . . , XN} can be extended to a function fα

(on X ) defined in (5.4) where fα(Xj) = f(Xj) = a⋆j and ‖fα‖L = ‖f‖L = 1, which

means fα is a maximizer of (5.3) and W (Pm,Qn) =
∑N

j=1 Ỹja
⋆
j .

Remark 5.2. (a) The main result that is invoked in the proof of Theorem 5.1 is

the extension of Lipschitz functions (defined on a subset of X ) to X . Since such

an extension is also possible for uniformly Hölder continuous functions, we obtain

an empirical estimator of γF similar to (5.5) and (5.6)—with ρ in (5.6) replaced

by ρα—where F = {‖f‖α ≤ 1} and

‖f‖α := sup

{ |f(x)− f(y)|
ρα(x, y)

: x 6= y in X
}
, 0 < α ≤ 1.

(b) Applying the similar idea as in the proof of Theorem 5.1 to the empirical es-

timation of Fortet-Mourier metric, it can be shown that γF(Pm,Qn) ≤
∑N

j=1 Ỹja
⋆
j ,
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where {a⋆j}Nj=1 solve the linear program in (5.6) with ρ(Xl, Xj) replaced by c(Xl, Xj).

Since it is not clear whether an extension theorem similar to the one invoked in

Theorem 5.1 (for Lipschitz functions) holds for f ∈ {g : ‖g‖c <∞}, it is not clear
whether γF(Pm,Qn) =

∑N
j=1 Ỹja

⋆
j holds for any {Xj}Nj=1.

Theorem 5.3 (Empirical estimator of Dudley metric). For all α ∈ [0, 1], the

following function solves (5.3) for F = Fβ:

gα(x) := max

(
− max

j=1,...,N
|a⋆j |,min

(
hα(x), max

j=1,...,N
|a⋆j |
))

(5.7)

where

hα(x) := α min
j=1,...,N

(a⋆j + L⋆ρ(x,Xj)) + (1− α) max
j=1,...,N

(a⋆j − L⋆ρ(x,Xj)), (5.8)

L⋆ = max
Xl 6=Xj

|a⋆l − a⋆j |
ρ(Xl, Xj)

,

β(Pm,Qn) =
N∑

j=1

Ỹja
⋆
j , (5.9)

and {a⋆j}Nj=1 solve the following linear program,

max
a1,...,aN ,b,c

N∑

j=1

Ỹjaj

s.t. −b ρ(Xl, Xj) ≤ al − aj ≤ b ρ(Xl, Xj), ∀ j, l
−c ≤ aj ≤ c, ∀ j
b+ c ≤ 1. (5.10)

Proof. The proof is similar to that of Theorem 5.1. Note that

1 ≥ ‖f‖BL = ‖f‖L + ‖f‖∞ = sup
x 6=y

|f(x)− f(y)|
ρ(x, y)

+ sup
x∈X

|f(x)|

≥ max
Xl 6=Xj

|f(Xl)− f(Xj)|
ρ(Xl, Xj)

+ max
j

|f(Xj)|,

which means

β(Pm,Qn) = sup

{
N∑

j=1

Ỹjf(Xj) : ‖f‖BL ≤ 1

}

≤ sup

{
N∑

j=1

Ỹjf(Xj) : max
j

|f(Xj)|+ max
Xl 6=Xj

|f(Xl)− f(Xj)|
ρ(Xl, Xj)

≤ 1

}
.
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Let aj := f(Xj). Therefore, β(Pm,Qn) ≤
∑N

j=1 Ỹja
⋆
j , where {a⋆j}Nj=1 solve

max
a1,...,aN

{
N∑

j=1

Ỹjaj : max
Xl 6=Xj

|al − aj |
ρ(Xl, Xj)

+ max
j

|aj| ≤ 1

}
. (5.11)

Introducing variables b and c such that maxXl 6=Xj

|al−aj |
ρ(Xl,Xj)

≤ b and maxj |aj| ≤ c re-

duces the program in (5.11) to (5.10). In addition, it is easy to see that the optimum

occurs at the boundary of the constraint set, i.e., maxXl 6=Xj

|al−aj |
ρ(Xl,Xj)

+maxj |aj| = 1.

Hence, by Lemma C.5, gα in (5.7) extends f defined on {X1, . . . , XN} to X , i.e.,

gα(Xj) = f(Xj), ∀ j and ‖gα‖BL = ‖f‖BL = 1. Note that hα in (5.8) is the Lips-

chitz extension of f to X (by Lemma C.4). Therefore, gα is a solution to (5.3) and

(5.9) holds.

Theorem 5.4 (Empirical estimator of MMD [37]). For F = Fk, the following

function is the unique solution to (5.3):

f =
1

‖∑N
j=1 Ỹjk(·, Xj)‖H

N∑

j=1

Ỹjk(·, Xj), (5.12)

and

γk(Pm,Qn) =

∥∥∥∥∥
N∑

j=1

Ỹjk(·, Xj)

∥∥∥∥∥
H

=

√√√√
N∑

l,j=1

ỸlỸjk(Xl, Xj). (5.13)

Proof. Consider γk(Pm,Qn) := sup{∑N
j=1 Ỹjf(Xj) : ‖f‖H ≤ 1}, which can be

written as

γk(Pm,Qn) = sup





〈
f,

N∑

j=1

Ỹjk(·, Xj)

〉

H

: ‖f‖H ≤ 1



 ,

where we have used the reproducing property of H, i.e., ∀ f ∈ H, ∀ x ∈ X , f(x) =
〈f, k(·, x)〉H. The result follows from using the Cauchy-Schwartz inequality.

It is clear from Theorems 5.1, 5.3 and 5.4 that the empirical estimator

of MMD is very easy to implement (as it is available in a closed form) com-

pared to those of Kantorovich and Dudley metrics, which involve solving linear

programs. One important observation to be made about all these estimators is

that they depend on {Xj}Nj=1 through ρ or k, which means, once {ρ(Xj , Xj)}Ni,j=1
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or {k(Xl, Xj)}Nj,l=1 is known, the complexity of the corresponding estimators is

independent of the dimension d when X = Rd, unlike in the estimation of KL-

divergence [89].

5.2.2 Interpretability of IPMs and their Empirical Estima-

tors: Relation to Binary Classification

In this section, we provide a novel interpretation of IPMs and their em-

pirical estimators by relating them to the problem of binary classification. We

show in Proposition 5.5 that W , β and γk are the optimal risks associated with

an appropriate binary classification problem, while in Proposition 5.6 we show

their empirical estimators to be related to the margins of Lipschitz classifier [88],

bounded Lipschitz classifier and support vector machine respectively. The signifi-

cance of latter result is that the smoothness of these classifiers are inversely related

to the distance between the empirical estimates of the class-conditional distribu-

tions, computed using W , β and γk respectively. In addition, we also establish the

relation between MMD and the Parzen window classifier [68, 70] (also called the

kernel classification rule [22, Chapter 10]).

Let us consider the binary classification problem with X being a X -valued

random variable, Y being a {−1,+1}-valued random variable and the product

space, X × {−1,+1}, being endowed with a Borel probability measure µ. A dis-

criminant function, f is a real valued measurable function on X , whose sign is used

to make a classification decision. Given a loss function, L : {−1,+1}×R → R, the

goal is to choose an f that minimizes the risk associated with L, with the optimal

L-risk being defined as,

RL
F⋆

= inf
f∈F⋆

∫

X
L(y, f(x)) dµ(x, y)

= inf
f∈F⋆

{
ε

∫

X
L1(f(x)) dP(x) + (1− ε)

∫

X
L−1(f(x)) dQ(x)

}
, (5.14)

where F⋆ is the set of all measurable functions on X , L1(α) := L(1, α), L−1(α) :=

L(−1, α), P(X) := µ(X|Y = +1), Q(X) := µ(X|Y = −1), ε := µ(X , Y = +1).

Here, P and Q represent the class-conditional distributions and ε is the prior



85

distribution of class +1. Now, we present the result that relates IPMs (between

the class-conditional distributions) and the optimal L-risk of a binary classification

problem.

Proposition 5.5 (γF and optimal L-risk). Let L1(α) = −α
ε
and L−1(α) = α

1−ε .

Let F ⊂ F⋆ be such that f ∈ F ⇒ −f ∈ F. Then, γF(P,Q) = −RL
F .

Proof. Define Pf :=
∫
X f dP. From (5.14), we have

ε

∫

X
L1(f) dP+ (1− ε)

∫

X
L−1(f) dQ =

∫

X
f dQ−

∫

X
f dP = Qf − Pf.

Therefore,

RL
F = inf

f∈F
(Qf − Pf) = − sup

f∈F
(Pf −Qf)

(a)
= − sup

f∈F
|Pf −Qf | = −γF(P,Q),

where (a) follows from the fact that F is symmetric around zero, i.e., f ∈ F ⇒
−f ∈ F.

Proposition 5.5 shows that γF(P,Q) (resp. γF(Pm,Qn)) is the negative of

the optimal L-risk that is associated with a binary classifier that classifies the

class-conditional distributions P and Q (resp. Pm and Qn) using the loss function,

L, in Proposition 5.5, when the discriminant function is restricted to F. Therefore,

Theorem 5.5 provides a novel interpretation for the Kantorovich metric, Dudley

metric and MMD (resp. their empirical estimators), which can be understood

as the optimal L-risk associated with binary classifiers where the discriminant

function, f is restricted to FW , Fβ and Fk respectively. Proposition 5.5 also shows

the importance of characteristic kernels in binary classification. This is because, if

k is not characteristic, which means γk(P,Q) = 0 for some P 6= Q, then RL
Fk

= 0,

i.e., the risk is maximum (note that since 0 ≤ γk(P,Q) = −RL
Fk
, the maximum risk

is zero). In other words, if k is characteristic, then the maximum risk is obtained

only when P = Q.

The following result (in Proposition 5.6) provides another interpretation for

the empirical estimators ofW , β and γk by relating them to the Lipschitz classifier,

bounded Lipschitz classifier and support vector machine. Before we present the

result, we briefly introduce these classifiers. Suppose {(Xj, Yj)}Nj=1, Xj ∈ X , Yj ∈
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{−1,+1}, ∀ j is a training sample drawn i.i.d. from µ and m := |{j : Yj = +1}|.
The Lipschitz classifier is defined as the solution, flip to the following program:

inf {‖f‖L : f ∈ Lip(X , ρ), Yjf(Xj) ≥ 1, i = j, . . . , N} , (5.15)

which is a large margin classifier with margin16 1
‖flip‖L . The program in (5.15)

computes a smooth function, f that classifies the training sequence, {(Xj, Yj)}Nj=1

correctly (note that the constraints in (5.15) are such that sign(f(Xj)) = Yj,

which means f classifies the training sequence correctly, assuming the training

sequence is separable). The smoothness is controlled by ‖f‖L (the smaller the

value of ‖f‖L, the smoother f and vice-versa). See [88] for a detailed study on the

Lipschitz classifier. Replacing ‖f‖L by ‖f‖BL in (5.15) gives the bounded Lipschitz

classifier, fBL which is the solution to the following program:

inf {‖f‖BL : f ∈ BL(X , ρ), Yjf(Xj) ≥ 1, j = 1, . . . , N} .

Note that replacing ‖f‖L by ‖f‖H in (5.15), taking the infimum over f ∈ H, yields

the hard-margin support vector machine, fsvm [14], i.e.,

fsvm = arg inf {‖f‖H : f ∈ H, Yjf(Xj) ≥ 1, j = 1, . . . , N} .

Proposition 5.6 (Empirical estimators and binary classification). The following

hold:

(a) 1
‖flip‖L ≤ 1

2
W (Pm,Qn)

(b) 1
‖fBL‖BL

≤ 1
2
β(Pm,Qn)

(c) 1
‖fsvm‖H ≤ 1

2
γk(Pm,Qn), if k is characteristic.

To prove Proposition 5.6, we need the following lemma.

Lemma 5.7. Let θ : V → R and ψ : V → R be convex functions on a real vector

space V . Suppose

a = sup{θ(x) : ψ(x) ≤ b}, (5.16)

16The margin is a technical term used—in statistical machine learning—to indicate how well the
training sample can be separated. Large margin classifiers (i.e., smooth classifiers) are preferred
as they generalize well to unseen samples (i.e., test samples). See [68] for details.
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where θ is not constant on {x : ψ(x) ≤ b} and a <∞. Then

b = inf{ψ(x) : θ(x) ≥ a}. (5.17)

Proof. Note that A := {x : ψ(x) ≤ b} is a convex subset of V . Since θ is not

constant on A, by Theorem C.10, θ attains its supremum on the boundary of

A. Therefore, any solution, x∗ to (5.16) satisfies θ(x∗) = a and ψ(x∗) = b. Let

G := {x : θ(x) > a}. For any x ∈ G, ψ(x) > b. If this were not the case, then x∗

is not a solution to (5.16). Let H := {x : θ(x) = a}. Clearly, x∗ ∈ H and so there

exists an x ∈ H for which ψ(x) = b. Suppose inf{ψ(x) : x ∈ H} = c < b, which

means for some x∗ ∈ H , x∗ ∈ A. From (5.16), this implies θ attains its supremum

relative to A at some point of relative interior of A. By Theorem C.10, this implies

θ is constant on A leading to a contradiction. Therefore, inf{ψ(x) : x ∈ H} = b

and the result in (5.17) follows.

Proof of Proposition 5.6. Define Pf :=
∫
X f dP. Note that ‖f‖L, ‖f‖BL and ‖f‖H

are convex functionals on the vector spaces Lip(X , ρ), BL(X , ρ) and U(X ) := {f :

X → R | ‖f‖H < ∞} respectively. Similarly, Pf − Qf is a convex functional on

Lip(X , ρ), BL(X , ρ) and U(X ). Since P 6= Q, Pf −Qf is not constant on FW , Fβ

and Fk. The results in (a)–(c) are obtained by appropriately choosing ψ, θ, V and

b in Lemma 5.7. Here, we only prove (a) as the proofs of (b) and (c) are similar to

that of (a).

Since W (Pm,Qn) = sup{∑N
j=1 Ỹjf(Xj) : ‖f‖L ≤ 1}, by Lemma 5.7, we

have

1 = inf

{
‖f‖L :

N∑

j=1

Ỹjf(Xj) ≥W (Pm,Qn), f ∈ Lip(X , ρ)
}
,

which can be written as

2

W (Pm,Qn)
= inf

{
‖f‖L :

N∑

j=1

Ỹjf(Xj) ≥ 2, f ∈ Lip(X , ρ)
}
.

Note that {f ∈ Lip(X , ρ) : Yjf(Xj) ≥ 1, ∀ j} ⊂ {f ∈ Lip(X , ρ) :∑N
j=1 Ỹjf(Xj) ≥

2}, and therefore

2

W (Pm,Qn)
≤ inf {‖f‖L : Yjf(Xj) ≥ 1, ∀ j, f ∈ Lip(X , ρ)} ,

hence proving (a). Similar analysis for β and γk yield (b) and (c).



88

The significance of this result is as follows. Proposition 5.6(a) shows that

‖flip‖L ≥ 2
W (Pm,Qn)

, which means the smoothness of the classifier, flip, computed

as ‖flip‖L is bounded by the inverse of the Kantorovich metric between Pm and

Qn. So, if the distance between the class-conditionals P and Q is “small” (in terms

of W ), then the resulting Lipschitz classifier is less smooth, i.e., a “complex”

classifier is required to classify the distributions P and Q. A similar explanation

holds for the bounded Lipschitz classifier and the support vector machine. Similar

to Proposition 5.5, Proposition 5.6(c) also shows the importance of characteristic

kernels in binary classification, especially in support vector machines. Suppose k

is not characteristic, then γk(Pm,Qn) can be zero for Pm 6= Qn, and therefore the

margin is zero, which means even unlike distributions can become inseparable.

Based on Theorem 5.4 and Proposition 5.5, the empirical estimator of MMD

can also be related to the Parzen window classifier as follows. Since the function,

f ∗ ∈ Fk that achieves R
L
Fk

(with L as in Proposition 5.5) is the same as the one in

(5.12), the classification decision is given by

sign(f ∗(x)) =

{
+1, 1

m

∑
Yj=1 k(x,Xj) >

1
n

∑
Yj=−1 k(x,Xj)

−1, 1
m

∑
Yj=1 k(x,Xj) ≤ 1

n

∑
Yj=−1 k(x,Xj)

, (5.18)

which is exactly the classification function of a Parzen window classifier17 [68,70].

5.2.3 Consistency and Rate of Convergence

In Section 5.2.1, we presented the empirical estimators of W, β and γk. For

these estimators to be reliable, we need them to converge to the population values

as m,n→ ∞. Even if this holds, we would like to have a fast rate of convergence

such that in practice, fewer samples are sufficient to obtain reliable estimates.

We address these issues in this section. The strong consistency of W (Pm,Qn)

and β(Pm,Qn) is shown in Proposition 5.9, while their rates of convergence are

17The classification rule in (5.18) differs from the “classical” Parzen window classifier in two
respects. (i) Usually, the kernel (called the smoothing kernel) in the Parzen window rule is
translation invariant in Rd. In our case, X need not be Rd and k need not be translation
invariant. So, the rule in (5.18) can be seen as a generalization of the classical Parzen window
rule. (ii) The kernel in (5.18) is positive definite unlike in the classical Parzen window rule where
k need not have to be so.
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analyzed in Corollary 5.12. Corollary 5.12 also proves the strong consistency of

γk(Pm,Qn) and analyzes its rate of convergence. We show that γk(Pm,Qn) enjoys

a fast rate of convergence compared to W (Pm,Qn) and β(Pm,Qn).

Before we start presenting the results, we briefly introduce some terminol-

ogy and notation from empirical process theory. For any r ≥ 1 and probability

measure Q, define the Lr norm ‖f‖Q,r := (
∫
X |f |r dQ)1/r and let Lr(Q) denote the

metric space induced by this norm. The covering number N (F, Lr(Q), ε) is the

minimal number of Lr(Q) balls of radius ε needed to cover F. H(F, Lr(Q), ε) :=

logN (F, Lr(Q), ε) is called the entropy of F using the Lr(Q) metric. Define the

minimal envelope function: F (x) := supf∈F |f(x)|.
We now present a general result on the strong consistency of γF(Pm,Qn),

which simply follows from Theorem C.11.

Lemma 5.8. Suppose the following conditions hold:

(i)
∫
F dP <∞.

(ii)
∫
F dQ <∞.

(iii) ∀ε > 0, 1
m
H(F, L1(Pm), ε)

P−→ 0 as m→ ∞.

(iv) ∀ε > 0, 1
n
H(F, L1(Qn), ε)

Q−→ 0 as n→ ∞.

Then, |γF(Pm,Qn)− γF(P,Q)| a.s.−→ 0 as m,n→ ∞.

Proof. Define Pf :=
∫
X f dP. Note that |γF(Pm,Qn)− γF(P,Q)| ≤ supf∈F |Pmf −

Pf |+ supf∈F |Qnf −Qf |. Therefore, by Theorem C.11, supf∈F |Pmf − Pf | a.s.−→ 0,

supf∈F |Qnf −Qf | a.s.−→ 0 and the result follows.

The following corollary to Lemma 5.8 shows thatW (Pm,Qn) and β(Pm,Qn)

are strongly consistent.

Proposition 5.9 (Consistency ofW and β). Let (X , ρ) be a totally bounded metric

space. Then, as m,n→ ∞,

(i) |W (Pm,Qn)−W (P,Q)| a.s.−→ 0.

(ii) |β(Pm,Qn)− β(P,Q)| a.s.−→ 0.
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Proof. For any f ∈ FW ,

f(x) ≤ sup
x∈X

|f(x)| ≤ sup
x,y

|f(x)− f(y)| ≤ ‖f‖L sup
x,y

ρ(x, y) ≤ ‖f‖Ldiam(X ) <∞,

where diam(X ) represents the diameter of X . Therefore, ∀ x ∈ X , F (x) ≤
diam(X ) < ∞, which satisfies (i) and (ii) in Lemma 5.8. Here diam(X ) :=

sup{ρ(x, y) : x, y ∈ X}. Kolmogorov and Tihomirov [45] have shown that

H(FW , ‖ · ‖∞, ε) ≤ N
(
X , ρ, ε

4

)
log

(
2

⌈
2 diam(X )

ε

⌉
+ 1

)
. (5.19)

Since H(FW , L
1(Pm), ε) ≤ H(FW , ‖ · ‖∞, ε), the conditions (iii) and (iv) in Lemma

5.8 are satisfied and therefore, |W (Pm,Qn)−W (P,Q)| a.s.−→ 0 as m,n→ ∞. Since

Fβ ⊂ FW , the envelope function associated with Fβ is upper bounded by the

envelope function associated with FW and H(Fβ, ‖ · ‖∞, ε) ≤ H(FW , ‖ · ‖∞, ε).
Therefore, the result for β follows.

Similar to Proposition 5.9, a strong consistency result for γk can be provided

by estimating the entropy number of Fk. See Cucker and Zhou [16, Chapter 5]

for the estimates of entropy numbers for various H. However, in the following, we

adopt a different approach to prove the strong consistency of γk. To this end, we

first provide a general result on the rate of convergence of γF(Pm,Qn) and then, as

a special case, obtain the rates of convergence of the empirical estimators of W , β

and γk. Using this result, we then prove the strong consistency of γk(Pm,Qn). We

start with the following definition.

Definition 5.10 (Rademacher complexity). Let F be a class of functions on X and

{̺j}mj=1 be independent Rademacher random variables, i.e., Pr(̺j = +1) = Pr(̺j =

−1) = 1
2
. The Rademacher process is defined as { 1

m

∑m
j=1 ̺if(Xj) : f ∈ F} for

some {Xj}mj=1 ⊂ X . The Rademacher complexity over F is defined as

Rm(F; {Xj}mj=1) := E sup
f∈F

∣∣∣∣∣
1

m

m∑

j=1

̺jf(Xj)

∣∣∣∣∣ .

We now present a general result that provides a probabilistic bound on the

deviation of γF(Pm,Qn) from γF(P,Q). This generalizes Theorem 4 in [37], the
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main difference being that we now consider function classes other than RKHSs,

and thus express the bound in terms of the Rademacher complexities (see the proof

for further discussion).

Theorem 5.11. For any F such that ν := supx∈X F (x) < ∞, with probability at

least 1− δ, the following holds:

|γF(Pm,Qn)− γF(P,Q)| ≤
√
18ν2 log

4

δ

(
1√
m

+
1√
n

)
+ 2Rm(F; {X(1)

j }mj=1)

+ 2Rn(F; {X(2)
j }nj=1). (5.20)

Proof. Define Pf :=
∫
X f dP. Since |γF(Pm,Qn)−γF(P,Q)| ≤ supf∈F |Pmf−Pf |+

supf∈F |Qnf−Qf |, we bound the terms supf∈F |Pmf−Pf | and supf∈F |Qnf−Qf |,
which are the fundamental quantities that appear in empirical process theory.

The proof strategy begins in a manner similar to [36, Appendix A.2], but with an

additional step which will be flagged below.

Note that supf∈F |Pmf − Pf | satisfies (C.6) with ci =
2ν
m
. Therefore, by

McDiarmid’s inequality in (C.7), we have that with probability at least 1− δ
4
, the

following holds:

sup
f∈F

|Pmf − Pf | ≤ E sup
f∈F

|Pmf − Pf |+
√

2ν2

m
log

4

δ

(a)

≤ 2E sup
f∈F

∣∣∣ 1
m

m∑

j=1

̺jf(X
(1)
j )
∣∣∣+
√

2ν2

m
log

4

δ
,

= 2E

[
E

[
sup
f∈F

∣∣∣∣∣
1

m

m∑

j=1

̺jf(X
(1)
j )

∣∣∣∣∣
∣∣∣ {X(1)

j }mj=1

]]
+

√
2ν2

m
log

4

δ
,

(5.21)

where (a) follows from bounding E supf∈F |Pmf−Pf | by using the symmetrization

inequality in (C.8).

Since E
[
supf∈F | 1m

∑m
j=1 ̺jf(X

(1)
j )| | {X(1)

j }mj=1

]
satisfies (C.6) with ci =

2ν
m
, by McDiarmid’s inequality in (C.7), with probability at least 1− δ

4
, we have

E sup
f∈F

∣∣∣∣∣
1

m

m∑

j=1

̺jf(X
(1)
j )

∣∣∣∣∣ ≤ E

[
sup
f∈F

∣∣∣∣∣
1

m

m∑

j=1

̺jf(X
(1)
j )

∣∣∣∣∣
∣∣∣ {X(1)

j }mj=1

]
+

√
2ν2

m
log

4

δ
.

(5.22)
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Tying (5.21) and (5.22), we have that with probability at least 1− δ
2
, the following

holds:

sup
f∈F

|Pmf − Pf | ≤ 2Rm(F; {X(1)
i }mj=1) +

√
18ν2

m
log

4

δ
. (5.23)

Performing similar analysis for supf∈F |Qnf − Qf |, we have that with probability

at least 1− δ
2
,

sup
f∈F

|Qnf −Qf | ≤ 2Rn(F; {X(2)
j }nj=1) +

√
18ν2

n
log

4

δ
. (5.24)

The result follows by adding (5.23) and (5.24). Note that the second application of

McDiarmid was not needed in [36, Appendix A.2], since in that case a simplification

was possible due to F being restricted to RKHSs.

Theorem 5.11 holds for any F for which ν is finite. However, to obtain the

rate of convergence for γF(Pm,Qn), one requires an estimate of Rm(F; {X(1)
j }mj=1)

and Rn(F; {X(2)
j }nj=1). Note that if Rm(F; {X(1)

j }mj=1)
P−→ 0 as m → ∞ and

Rn(F; {X(2)
j }nj=1)

Q−→ 0 as n→ ∞, then

|γF(Pm,Qn)− γF(P,Q)| P,Q−→ 0 as m,n→ ∞.

Also note that if Rm(F; {X(1)
j }mj=1) = OP(rm) and Rn(F; {X(2)

j }nj=1) = OQ(rn)

where rm, rn → 0 as m,n→ ∞, then from (5.20),

|γF(Pm,Qn)− γF(P,Q)| = OP,Q(rm ∨ m−1/2 + rn ∨ n−1/2),

where a ∨ b := max(a, b). The following corollary to Theorem 5.11 provides the

rate of convergence forW (Pm,Qn), β(Pm,Qn) and γk(Pm,Qn). Note that Corollary

5.12(ii) was proved in [37], [36, Appendix A.2] by a more direct argument, where

the fact that Fk is an RKHS was used at an earlier stage of the proof to simplify

the reasoning. We include the result here for completeness.

Corollary 5.12 (Rates of convergence for W , β and γk). (i) Let X be a bounded

subset of (Rd, ‖ · ‖s) for some 1 ≤ s ≤ ∞. Then,

|W (Pm,Qn)−W (P,Q)| = OP,Q(rm + rn)
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and

|β(Pm,Qn)− β(P,Q)| = OP,Q(rm + rn),

where

rm =

{
m−1/2 logm, d = 1

m−1/(d+1), d ≥ 2
. (5.25)

In addition if X is a bounded, convex subset of (Rd, ‖ ·‖s) with non-empty interior,

then

rm =





m−1/2, d = 1

m−1/2 logm, d = 2

m−1/d, d > 2

. (5.26)

(ii) Let X be a measurable space. Suppose k is measurable and supx∈X k(x, x) ≤
C <∞. Then,

|γk(Pm,Qn)− γk(P,Q)| = OP,Q(m
−1/2 + n−1/2).

In addition,

|γk(Pm,Qn)− γk(P,Q)| a.s.−→ 0 as m,n→ ∞,

i.e., the empirical estimator of MMD is strongly consistent.

Proof. (i) The generalized entropy bound [88, Theorem 16] gives that for every

ε > 0,

Rm(F; {X(1)
j }mj=1) ≤ 2ε+

4
√
2√
m

∫ ∞

ε/4

√
H(F, L2(Pm), τ) dτ. (5.27)

Let F = FW . Since X is a bounded subset of Rd, it is totally bounded and therefore

the entropy number in (5.27) can be bounded through (5.19) by noting that

H(FW , L
2(Pm), τ) ≤ H(FW , ‖ · ‖∞, τ) ≤

C1

τd+1
+
C2

τd
, (5.28)

where we have used the fact that N (X , ‖ · ‖s, ε) = O(ε−d), 1 ≤ s ≤ ∞ and

log(⌈x⌉+1) ≤ x+1.18 The constants C1 and C2 depend only on the properties of

X and are independent of τ . Substituting (5.28) in (5.27), we have

Rm(FW ; {X(1)
j }mj=1) ≤ inf

ε>0

[
2ε+

4
√
2√
m

∫ ∞

ε/4

√
H(FW , L2(Pm), τ) dτ

]

18Note that for any x ∈ X ⊂ Rd, ‖x‖∞ ≤ · · · ≤ ‖x‖s ≤ · · · ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
d‖x‖2.

Therefore, ∀ s ≥ 2, N (X , ‖ · ‖s, ε) ≤ N (X , ‖ · ‖2, ε) and ∀ 1 ≤ s ≤ 2, N (X , ‖ · ‖s, ε) ≤ N (X ,
√
d‖ ·

‖2, ε) = N (X , ‖ · ‖2, ε/
√
d). Use N (X , ‖ · ‖2, ε) = O(ε−d) [85, Lemma 2.5].
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≤ inf
ε>0

[
2ε+

4
√
2√
m

∫ 4R

ε/4

( √
C1

τ (d+1)/2
+

√
C2

τd/2

)
dτ

]
,

where R := diam(X ). Note the change in upper limits of the integral from ∞ to

4R. This is because X is totally bounded and H(FW , ‖·‖∞, τ) depends on N (X , ‖·
‖s, τ/4). The rates in (5.25) are simply obtained by solving the right hand side of

the above inequality. As mentioned in the paragraph preceding the statement of

Corollary 5.12, we have rm ∨m−1/2 = rm and so the result for W (Pm,Qn) follows.

Suppose X is convex. Then X is connected. It is easy to see that X is also

centered, i.e., for all subsets A ⊂ X with diam(A) ≤ 2r there exists a point x ∈ X
such that ‖x− a‖s ≤ r for all a ∈ A. Since X is connected and centered, we have

from [45] that

H(FW , L
2(Pm), τ) ≤ H(FW , ‖ · ‖∞, τ)

≤ N
(
X , ‖ · ‖s,

τ

2

)
log 2 + log

(
2

⌈
2 diam(X )

τ

⌉
+ 1

)

≤ C3τ
−d + C4τ

−1 + C5, (5.29)

where we used the fact that N (X , ‖ · ‖s, ε) = O(ε−d). C3, C4 and C5 are constants

that depend only on the properties of X and are independent of τ . Substituting

(5.29) in (5.27), we have,

Rm(FW ; {X(1)
j }mj=1) ≤ inf

ε>0

[
2ε+

4
√
2√
m

∫ 2R

ε/4

√
C3

τd/2
dτ

]
+O(m−1/2).

Again note the change in upper limits of the integral from∞ to 2R. This is because

H(FW , ‖ · ‖∞, τ) depends on N (X , ‖ · ‖s, τ/2). The rates in (5.26) are obtained by

solving the right hand side of the above inequality. Since rm ∨ m−1/2 = rm, the

result for W (Pm,Qn) follows.

Since Fβ ⊂ FW , we have Rm(Fβ; {X(1)
j }mj=1) ≤ Rm(FW ; {X(1)

j }mj=1) and

therefore, the result for β(Pm,Qn) follows. The rates in (5.26) can also be directly

obtained for β by using the entropy number of Fβ, i.e., H(Fβ, ‖·‖∞, ε) = O(ε−d) [86,

Theorem 2.7.1] in (5.27).

(ii) By [6, Lemma 22], Rm(Fk; {X(1)
j }mj=1) ≤

√
C√
m

and Rn(Fk; {X(2)
j }nj=1) ≤

√
C√
n
.

Substituting these in (5.20) yields the result. In addition, by the Borel-Cantelli

lemma [23, Theorem 8.3.4], the strong consistency of γk(Pm,Qn) follows.
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Remark 5.13. (i) Note that the rate of convergence of W (Pm,Qn) and β(Pm,Qn)

is dependent on the dimension, d, which means that in large dimensions, more

samples are needed to obtain useful estimates of W (P,Q) and β(P,Q). Also note

that the rates are independent of the metric, ‖ · ‖s, 1 ≤ s ≤ ∞.

(ii) When X is a bounded, convex subset of (Rd, ‖ · ‖s), faster rates are obtained

than for the case where X is just a bounded (but not convex) subset of (Rd, ‖ · ‖s).
(iii) In the case of MMD, we have not made any assumptions on X except it being

a topological space. When X = Rd, the rate is independent of d, which is a very

useful property. The condition of the kernel being bounded is satisfied by a host

of kernels, the examples of which include the Gaussian kernel, Laplacian kernel,

inverse multiquadratics, etc., on Rd. See Wendland [91] for more examples. As

mentioned before, the estimates for Rm(Fk; {X(1)
j }mj=1) can be directly obtained by

using the entropy numbers of Fk. See Cucker and Zhou [16, Chapter 5] for the

estimates of entropy numbers for various H.

To summarize, in this section, we have shown that the empirical estimators

of Kantorovich metric, Dudley metric and MMD are strongly consistent and the

empirical estimator of MMD exhibits fast rate of convergence compared to those of

Kantorovich and Dudley metrics (and also of φ-divergence [56,57,89]). Therefore,

based on the results in this section and Section 5.2.1, it is clear that the empirical

estimator of MMD has more favorable properties compared to the other empiri-

cal estimators under consideration and hence is more suited for use in statistical

inference applications like two-sample tests [37].

5.2.4 Simulation Results

So far, in Sections 5.2.1 and 5.2.3, we have presented the empirical estima-

tors of W , β and γk and their convergence analysis. Though we have shown that

the empirical estimator of γk has more favorable properties than those ofW and β,

we would like to know how good these estimators are in practice? In this section,

we demonstrate the performance of these estimators through simulations.

As we have mentioned before, given P and Q, it is usually difficult to exactly
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computeW (P,Q), β(P,Q) and γk(P,Q). However, in order to test the performance

of their empirical estimators, in the following, we consider some examples where

W (P,Q), β(P,Q) and γk(P,Q) can be computed exactly.

Empirical Estimator of W (P,Q)

For the ease of computation, let us consider P and Q (defined on the Borel

σ-algebra of Rd) as product measures, P = ⊗d
j=1P

(j) and Q = ⊗d
j=1Q

(j), where P(j)

and Q(j) are defined on the Borel σ-algebra of R. In this setting, when ρ(x, y) =

‖x− y‖1, it is easy to show that

W (P,Q) =
d∑

j=1

W (P(j),Q(j)), (5.30)

where

W (P(j),Q(j)) =

∫

R

∣∣FP(j)(x)− FQ(j)(x)
∣∣ dx, (5.31)

and FP(j)(x) = P(j)((−∞, x]) [84].19 Now, in the following, we consider two exam-

ples where W in (5.31) can be computed in closed form. Note that we need X to

be a bounded subset of Rd such that the consistency of W (Pm,Qn) is guaranteed

by Corollary 5.12.

Example 5.14. Let X = ×d
j=1[aj , sj]. Suppose P(j) = U [aj , bj ] and Q(j) =

U [rj , sj], which are uniform distributions on [aj , bj ] and [rj , sj] respectively, where

−∞ < aj ≤ rj ≤ bj ≤ sj < ∞. Then, it is easy to verify that W (P(j),Q(j)) =

(sj + rj − aj − bj)/2 and W (P,Q) follows from (5.30).

Figures 5.1(a) and 5.1(b) show W (Pm,Qn) (shown in thick dotted lines) for

d = 1 and d = 5 respectively. Figure 5.1(c) shows the behavior of W (Pm,Qn) and

W (P,Q) for various d with a fixed sample size of m = n = 250. Here, we chose

aj = −1
2
, bj =

1
2
, rj = 0 and sj = 1 for all j = 1, . . . , d such that W (P(j),Q(j)) =

1
2
, ∀j and W (P,Q) = d

2
, shown in thin dotted lines in Figures 5.1(a-c).

19The explicit form for the L1-Wasserstein distance in (5.2) is known for (X , ρ(x, y)) = (R, |x−
y|) [83, 84], which is given as W1(P,Q) =

∫
(0,1)

|F−1
P (u) − F−1

Q (u)| du =
∫
R
|FP(x) − FQ(x)| dx,

where FP(x) = P((−∞, x]) and F−1
P (u) = inf{x ∈ R|FP(x) ≥ u}, 0 < u < 1. However, the exact

computation (in closed form) of W1(P,Q) is not straightforward for all P and Q. Note that since
Rd is separable, by the Kantorovich-Rubinstein theorem, W (P,Q) = W1(P,Q), ∀P,Q.
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Figure 5.1: (a-b) represent the empirical estimates of the Kantorovich metric
(shown in thick dotted lines) between P = U [−1

2
, 1
2
]d and Q = U [0, 1]d with

ρ(x, y) = ‖x− y‖1, for increasing sample size N , where d = 1 in (a) and d = 5 in
(b). Here U [l1, l2]

d represents a uniform distribution on [l1, l2]
d (see Example 5.14

for details). The population values of the Kantorovich metric between P and Q are
shown in thin dotted lines in (a-c). (c) represents the behavior of W (Pm,Qn) and
W (P,Q) for varying d with a fixed sample size of m = n = 250 (see Example 5.14
for details on the choice of P and Q). Error bars are obtained by replicating the
experiment 20 times.

Example 5.15. Let X = ×d
j=1[0, cj]. Suppose P(j), Q(j) have densities

pj(x) =
dP(j)

dx
=

λie
−λjx

1− e−λjcj
, qj(x) =

dQ(j)

dx
=

µje
−µjx

1− e−µjcj

respectively, where λj > 0, µj > 0. Note that P(j) and Q(j) are exponential distri-

butions supported on [0, cj] with rate parameters λj and µj. Then, it can be shown

that

W (P(j),Q(j)) =

∣∣∣∣
1

λj
− 1

µj
− cj(e

−λjcj − e−µjcj)

(1− e−λjcj)(1− e−µjcj)

∣∣∣∣ ,

and W (P,Q) follows from (5.30).
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Figure 5.2: (a-b) represent the empirical estimates of the Kantorovich metric
(shown in thick dotted lines) between P and Q, which are truncated exponential
distributions on Rd

+ (see Example 5.15 for details), for increasing sample size N .
Here d = 1 in (a) and d = 5 in (b) with ρ(x, y) = ‖x− y‖1. The population values
of the Kantorovich metric between P and Q are shown in thin dotted lines in (a-c).
(c) represents the behavior of W (Pm,Qn) and W (P,Q) for varying d with a fixed
sample size of m = n = 250 (see Example 5.15 for details on the choice of P and
Q). Error bars are obtained by replicating the experiment 20 times.

Figures 5.2(a) and 5.2(b) show W (Pm,Qn) (shown in thick dotted lines)

for d = 1 and d = 5 respectively. Let λ = (λ1, d. . ., λd), µ = (µ1, d. . ., µd) and

c = (c1, d. . ., cd). In Figure 5.2(a), we chose λ = (3), µ = (1) and c = (5)

which gives W (P,Q) = 0.6327. In Figure 5.2(b), we chose λ = (3, 2, 1/2, 2, 7),

µ = (1, 5, 5/2, 1, 8) and c = (5, 6, 3, 2, 10), which gives W (P,Q) = 1.9149. The

population values W (P,Q) are shown in thin dotted lines in Figures 5.2(a) and

5.2(b). Figure 5.2(c) shows W (Pm,Qn) and W (P,Q) for various d with a fixed

sample size of m = n = 250, λ = (3, 3, d. . ., 3), µ = (1, 1, d. . ., 1) and c = (5, 5, d. . ., 5).

The empirical estimates in Figures 5.1 and 5.2 are obtained by drawing N
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i.i.d. samples (with m = n = N/2) from P and Q and then solving the linear pro-

gram in (5.6). It is easy to see from Figures 5.1(a,b) and 5.2(a,b) that W (Pm,Qn)

improves with increasing sample size and that W (Pm,Qn) estimates W (P,Q) cor-

rectly, which therefore demonstrates the efficacy of the estimator. Figures 5.1(c)

and 5.2(c) show the effect of dimensionality, d of the data on W (Pm,Qn). They

show that at large d, the estimator has a large bias and more samples are needed

to obtain better estimates. Error bars are obtained by replicating the experiment

20 times.

Empirical Estimator of γk(P,Q)

We now consider the performance of γk(Pm,Qn). Note that, although

γk(P,Q) has a closed form in (3.5), exact computation is not always possible for

all choices of k, P and Q. In such cases, one has to resort to numerical techniques

to compute the integrals in (3.5). In the following, we present two examples where

we choose P and Q such that γk(P,Q) can be computed exactly, which is then

used to verify the performance of γk(Pm,Qn). Also note that for the consistency

of γk(Pm,Qn), by Proposition 5.9, we just need the kernel, k to be measurable and

bounded and no assumptions on X are required.

Example 5.16. Let X = Rd, P = ⊗d
j=1P

(j) and Q = ⊗d
j=1Q

(j). Suppose P(j) =

N(µj , σ
2
j ) and Q(i) = N(λj , θ

2
j ), where N(µ, σ2) represents a Gaussian distribution

with mean µ and variance σ2. Let k(x, y) = exp(−‖x − y‖22/2τ 2). Clearly k is

measurable and bounded. With this choice of k, P and Q, γk in (3.5) can be

computed exactly as

γ2k(P,Q) =

d∏

j=1

τ√
2σ2

j + τ 2
+

d∏

j=1

τ√
2θ2j + τ 2

− 2

d∏

j=1

τe
− (µj−λj)

2

2(σ2
j
+θ2

j
+τ2)

√
σ2
j + θ2j + τ 2

, (5.32)

as the integrals in (3.5) simply involve the convolution of Gaussian distributions.

Figures 5.3(a-b) show γk(Pm,Qn) (shown in thick dotted lines) for d = 1 and

d = 5 respectively. Figure 5.3(c) shows the behavior of γk(Pm,Qn) and γk(P,Q)

for varying d with a fixed sample size of m = n = 250. Here we chose µj = 0,

λj = 1, σj =
√
2, θj =

√
2 for all j = 1, . . . , d and τ = 1. Using these values in
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Figure 5.3: (a-b) represent the empirical estimates of MMD (shown in thick
dotted lines) between P = N(0, 2Id) and Q = N(1, 2Id) with k(x, y) = exp(−1

2
‖x−

y‖22), for increasing sample size N , where d = 1 in (a) and d = 5 in (b) (see
Example 5.16 for details). Here N(µ, σ2Id) represents a normal distribution with
mean vector (µ1, d. . ., µd) and covariance matrix σ2Id. Id represents the d×d identity
matrix. The population values of MMD are shown in thin dotted lines in (a-c).
(c) represents the behavior of γk(Pm,Qn) and γk(P,Q) for varying d with a fixed
sample size of m = n = 250 (see Example 5.16 for details on the choice of P and
Q). Error bars are obtained by replicating the experiment 20 times.

(5.32), it is easy to check that γk(P,Q) = 5−d/4(2− 2e−d/10)1/2, which is shown in

thin dotted lines in Figures 5.3(a-c). We remark that an alternative estimator of

γk exists which does not suffer from bias at small sample sizes: see [37].

Example 5.17. Let X = Rd
+, P = ⊗d

j=1P
(j) and Q = ⊗d

j=1Q
(j). Suppose P(j) =

Exp(1/λj) and Q(j) = Exp(1/µj), which are exponential distributions on R+ with

rate parameters λj > 0 and µj > 0 respectively. Suppose k(x, y) = exp(−α‖x −
y‖1), α > 0, which is a Laplacian kernel on Rd. Then, it is easy to verify that



101

γk(P,Q) in (3.5) reduces to

γ2k(P,Q) =

d∏

j=1

λj
λj + α

+

d∏

j=1

µj
µj + α

− 2

d∏

j=1

λjµj(λj + µj + 2α)

(λj + α)(µj + α)(λj + µj)
.

Figures 5.4(a-b) show γk(Pm,Qn) (shown in thick dotted lines) for d = 1

and d = 5 respectively. Figure 5.4(c) shows the dependence of γk(Pm,Qn) and

γk(P,Q) on d at a fixed sample size of m = n = 250. Here, we chose {λj}dj=1 and

{µj}dj=1 as in Example 5.15 with α = 1
4
, which gives γk(P,Q) = 0.2481 for d = 1

and 0.3892 for d = 5, shown in thin dotted lines in Figures 5.4(a-c).

As in the case of W (Pm,Qn), the performance of γk(Pm,Qn) is verified

by drawing N i.i.d. samples (with m = n = N/2) from P and Q and comput-

ing γk(Pm,Qn) in (5.13). Figures 5.3(a,b) and 5.4(a,b) show the performance of

γk(Pm,Qn) for various sample sizes and some fixed d. It is easy to see that the

quality of the estimate improves with increasing sample size and that γk(Pm,Qn)

estimates γk(P,Q) correctly. On the other hand, Figures 5.3(c) and 5.4(c) demon-

strate that γk(Pm,Qn) is biased at large d and more samples are needed to obtain

better estimates. As in the case of W , the error bars are obtained by replicating

the experiment 20 times.

Empirical Estimator of β(P,Q)

In the case of W and γk, we have some closed form expression to start with

(see (5.31) and (3.5)), which can be solved by numerical methods. The resulting

value is then used as the baseline to test the performance of the estimators of

W and γk. On the other hand, in the case of β, we are not aware of any such

closed form expression to compute the baseline. However, it is possible to compute

β(P,Q) when P and Q are discrete distributions on X , i.e., P =
∑r

j=1 λjδXj
, Q =

∑s
j=1 µjδZj

, where
∑r

j=1 λj = 1,
∑s

j=1 µj = 1, Xj, Zj ∈ X , λj ≥ 0, µj ≥ 0, ∀ j.
This is because, for this choice of P and Q, we have

β(P,Q) = sup

{
r∑

j=1

λjf(Xj)−
s∑

j=1

µjf(Zi) : ‖f‖BL ≤ 1

}

= sup

{
r+s∑

j=1

θjf(Vj) : ‖f‖BL ≤ 1

}
, (5.33)
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Figure 5.4: (a-b) represent the empirical estimates of MMD (shown in thick
dotted lines) between P and Q, which are exponential distributions on Rd

+ (see
Example 5.17 for details), for increasing sample size N . Here d = 1 in (a) and
d = 5 in (b) with k(x, y) = exp(−1

4
‖x− y‖1). The population values of MMD are

shown in thin dotted lines in (a-c). (c) represents the behavior of γk(Pm,Qn) and
γk(P,Q) for varying d with a fixed sample size of m = n = 250 (see Example 5.17
for details on the choice of P and Q). Error bars are obtained by replicating the
experiment 20 times.

where θ = (λ1, . . . , λr,−µ1, . . . ,−µs), V = (X1, . . . , Xr, Z1, . . . , Zs) with θj := (θ)j

and Vj := (V )j . Now, (5.33) is of the form of (5.3) and so, by Theorem 5.3,

β(P,Q) =
∑r+s

j=1 θja
⋆
j , where {a⋆j} solve the following linear program,

max
a1,...,ar+s,b,c

r+s∑

j=1

θjaj

s.t. −b ρ(Vl, Vj) ≤ al − aj ≤ b ρ(Vl, Vj), ∀ j, l
−c ≤ aj ≤ c, ∀ j
b+ c ≤ 1. (5.34)
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Figure 5.5: Empirical estimates of the Dudley metric (shown in a thick dotted
line) between discrete distributions P and Q on R (see Example 5.18 for details),
for increasing sample size N . The population value of the Dudley metric is shown
in a thin dotted line. Error bars are obtained by replicating the experiment 20
times.

Therefore, for these distributions, one can compute the baseline which can then

be used to verify the performance of β(Pm,Qn). In the following, we consider a

simple example to demonstrate the performance of β(Pm,Qn).

Example 5.18. Let X = {0, 1, 2, 3, 4, 5} ⊂ R, λ = (1
3
, 1
6
, 1
8
, 1
4
, 1
8
), µ = (1

4
, 1
4
, 1
4
, 1
4
),

X = (0, 1, 2, 3, 4) and Z = (2, 3, 4, 5). With this choice, P and Q are defined as

P =
∑5

j=1 λjδXj
and Q =

∑4
j=1 µjδZj

. By solving (5.34) with ρ(x, y) = |x− y|, we
get β(P,Q) = 0.5278.

Figure 5.5 shows β(Pm,Qn) (shown in a thick dotted line) which is computed

by drawing N i.i.d. samples (with m = n = N/2) from P and Q and solving the

linear program in (5.10). It can be seen that β(Pm,Qn) estimates β(P,Q) correctly.

Since we do not know how to compute β(P,Q) for P and Q other than the

ones we discussed here, we do not provide any other non-trivial examples to test

the performance of β(Pm,Qn).

5.2.5 Empirical Estimation of Total Variation Distance

In Sections 5.2.1–5.2.4, we have derived and analyzed the empirical estima-

tors of W , β and γk. Since the total variation distance,

TV (P,Q) := sup

{∫

X
f d(P−Q) : ‖f‖∞ ≤ 1

}
,
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is also an IPM, in this section, we consider its empirical estimation and consistency

analysis. Suppose X is a metric space. Let TV (Pm,Qn) be the empirical estimator

of TV (P,Q). Using similar arguments as in Theorems 5.1 and 5.3, it can be shown

that

TV (Pm,Qn) =

N∑

j=1

Ỹja
⋆
j ,

where {a⋆j}Nj=1 solve the following linear program,

max
a1,...,aN

{
N∑

j=1

Ỹjaj : −1 ≤ aj ≤ 1, ∀ j
}
.

Now, the question is whether this estimator consistent. First note that a⋆j =

sign(Ỹj) and therefore, TV (Pm,Qn) = 2 for any m,n. This means for any P,Q

such that TV (P,Q) < 2, TV (Pm,Qn) is not a consistent estimator of TV (P,Q).

Indeed a⋆i , ∀ i are independent of the actual samples, {Xj}Nj=1 drawn from P and

Q, unlike in the estimation of Kantorovich and Dudley metrics, and therefore it is

not surprising that TV (Pm,Qn) is not a consistent estimator of TV (P,Q).

Suppose X = Rd and let P, Q be absolutely continuous w.r.t. the Lebesgue

measure. Then TV (P,Q) can be consistently estimated in a strong sense using the

total variation distance between the kernel density estimators of P and Q. This is

because if P̃m and Q̃n represent the kernel density estimators associated with P and

Q respectively, then |TV (P̃m, Q̃n) − TV (P,Q)| ≤ TV (P̃m,P) + TV (Q̃n, Q)
a.s.−→ 0

as m,n→ ∞ (see [21, Chapter 6] and references therein).

The issue in the empirical estimation of TV (P,Q) is that the set FTV :=

{f : ‖f‖∞ ≤ 1} is too large to obtain meaningful results if no assumptions on

distributions are made. On the other hand, one can choose a more manage-

able subset F of FTV such that γF(P,Q) ≤ TV (P,Q), ∀P,Q and γF(Pm,Qn) is

a consistent estimator of γF(P,Q). Examples of such choice of F include Fβ and

{1(−∞,t] : t ∈ Rd}, where the former yields the Dudley metric while the latter

results in the Kolmogorov distance. The empirical estimator of the Dudley metric

and its consistency have been presented in Sections 5.2.1 and 5.2.3. The empiri-

cal estimator of the Kolmogorov distance between P and Q is well studied and is

strongly consistent, which simply follows from the famous Glivenko-Cantelli theo-
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rem [22, Theorem 12.4].

Since the total variation distance between P and Q cannot be estimated

consistently for all P,Q, in the following, we present two lower bounds on TV , one

involvingW and β and the other involving γk, which can be estimated consistently.

Proposition 5.19 (Lower bounds on TV ). (i) Suppose (X , ρ) is a metric space.

Then for all P 6= Q, we have

TV (P,Q) ≥ W (P,Q)β(P,Q)

W (P,Q)− β(P,Q)
. (5.35)

(ii) Suppose C := supx∈X k(x, x) <∞. Then

TV (P,Q) ≥ γk(P,Q)√
C

. (5.36)

Before we prove Proposition 5.19, we present an upper bound on γk in terms

of the coupling formulation [23, Section 11.8], which is not only useful in proving

Proposition 5.19(ii) (we also use it to prove Theorem 5.22) but also interesting in

its own right.

Proposition 5.20 (Coupling bound). Let k be measurable and bounded on X .

Then, for any P,Q ∈M1
+(X ),

γk(P,Q) ≤ inf
µ∈L(P,Q)

∫∫

X
‖k(·, x)− k(·, y)‖H dµ(x, y), (5.37)

where L(P,Q) represents the set of all laws on X × X with marginals P and Q.

Proof. For any µ ∈ L(P,Q), we have
∣∣∣∣
∫

X
f d(P−Q)

∣∣∣∣ =
∣∣∣∣
∫∫

X
(f(x)− f(y)) dµ(x, y)

∣∣∣∣

≤
∫∫

X
|f(x)− f(y)| dµ(x, y)

(a)
=

∫∫

X
|〈f, k(·, x)− k(·, y)〉H| dµ(x, y)

(b)

≤ ‖f‖H
∫∫

X
‖k(·, x)− k(·, y)‖H dµ(x, y), (5.38)

where we have used the reproducing property of H in (a) and the Cauchy-Schwartz

inequality in (b). Taking the supremum over f ∈ Fk and the infimum over µ ∈
L(P,Q) in (5.38), where P,Q ∈ M1

+(X ), gives the result in (5.37).
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Proof of Proposition 5.19. (i) The proof is based on Lemma 5.7. Note that ‖f‖L,
‖f‖BL and ‖f‖∞ are convex functionals on the vector spaces Lip(X , ρ), BL(X , ρ)
and U(X ) := {f : X → R | ‖f‖∞ < ∞} respectively. Similarly, Pf − Qf is a

convex functional on Lip(X , ρ), BL(X , ρ) and U(X ), where Pf :=
∫
X f dP. Since

P 6= Q, Pf −Qf is not constant on FW , Fβ and FTV . Therefore, by appropriately

choosing ψ, θ, V and b in Lemma 5.7, the following sequence of inequalities are

obtained.

1 = inf{‖f‖BL : Pf −Qf ≥ β(P,Q), f ∈ BL(X , ρ)}
≥ inf{‖f‖L : Pf −Qf ≥ β(P,Q), f ∈ BL(X , ρ)}

+ inf{‖f‖∞ : Pf −Qf ≥ β(P,Q), f ∈ BL(X , ρ)}

=
β(P,Q)

W (P,Q)
inf{‖f‖L : Pf −Qf ≥W (P,Q), f ∈ BL(X , ρ)}

+
β(P,Q)

TV (P,Q)
inf{‖f‖∞ : Pf −Qf ≥ TV (P,Q), f ∈ BL(X , ρ)}

≥ β(P,Q)

W (P,Q)
inf{‖f‖L : Pf −Qf ≥W (P,Q), f ∈ Lip(X , ρ)}

+
β(P,Q)

TV (P,Q)
inf{‖f‖∞ : Pf −Qf ≥ TV (P,Q), f ∈ U(X )}

=
β(P,Q)

W (P,Q)
+

β(P,Q)

TV (P,Q)
,

which gives (5.35).

(ii) To prove (5.36), we use the coupling formulation for TV [49, p. 19] given by

TV (P,Q) = 2 inf
µ∈L(P,Q)

µ(X 6= Y ), (5.39)

where L(P,Q) is the set of all measures on X ×X with marginals P and Q. Here,

X and Y are distributed as P and Q respectively. Let λ ∈ L(P,Q) and f ∈ H.

Consider

‖k(·, x)− k(·, y)‖H ≤ 1x 6=y‖k(·, x)− k(·, y)‖H
≤ 1x 6=y [‖k(·, x)‖H + ‖k(·, y)‖H]
= 1x 6=y

[√
k(x, x) +

√
k(y, y)

]

≤ 2
√
C1x 6=y. (5.40)

Using (5.40) in (5.37) yields (5.36) through (5.39).
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Remark 5.21. (i) As mentioned before, a simple lower bound on TV can be ob-

tained as TV (P,Q) ≥ β(P,Q), ∀P,Q ∈ M1
+(X ). It is easy to see that the bound

in (5.35) is tighter as W (P,Q)β(P,Q)
W (P,Q)−β(P,Q)

≥ β(P,Q) with equality if and only if P = Q.

(ii) The bounds in (5.35) and (5.36) translate as lower bounds on the KL-divergence

through Pinsker’s inequality: TV 2(P,Q) ≤ 2Dt log t(P,Q), ∀P,Q ∈ M1
+(X ). See

[25] and references therein for more refined bounds between TV and KL-divergence.

Therefore, using these bounds, one can obtain a consistent estimate of a lower

bound on TV and KL-divergence. The bounds in (5.35) and (5.36) also translate

to lower bounds on other distance measures on probabilities. See [33] for a detailed

discussion on the relation between various metrics.

5.3 Metrization of the Weak Topology

As motivated in Section 5.1, an important question to consider that is

useful both in theory and practice would be: “How strong or weak is γk related to

other metrics on M1
+(X )?” This question is addressed in Theorem 5.22, where we

compare γk to other metrics on M1
+(X ) like the Dudley metric (β), Wasserstein

distance (W ), total variation distance (TV ), and show that γk is weaker than all

these metrics (see footnote 15 for the definition of “strong” and “weak” metrics).

Since γk is weaker than β, which is known to induce a topology on M1
+(X ) that

coincides with the standard topology on M1
+(X ), called the weak∗ (weak-star)

topology (usually called the weak topology in probability theory and from now on

we use these terms interchangeably), this naturally leads to the question, “For what

k does the topology induced by γk coincide with the weak topology?” Although we

arrived at this question motivated by an application, this question on its own is

theoretically interesting and important in probability theory, especially in proving

central limit theorems. In Theorem 5.24 we show that c0-universal kernels metrize

the weak∗-topology on M1
+(X ), assuming X to be a Polish and LCH space.

First, we start with some preliminaries. The weak topology on M1
+(X )

is the weakest topology such that the map P 7→
∫
X f dP is continuous for all

f ∈ Cb(X ). For a metric space (X , ρ), a sequence Pn of probability measures is
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said to converge weakly to P, written as Pn
w→ P, if and only if

∫
X f dPn →

∫
X f dP

for every f ∈ Cb(X ). A metric γ on M1
+(X ) is said to metrize the weak topology

if the topology induced by γ coincides with the weak topology, which is defined as

follows: if, for P,P1,P2, . . . ∈M1
+(X ), (Pn

w→ P ⇔ γ(Pn,P)
n→∞−→ 0) holds, then the

topology induced by γ coincides with the weak topology.

In the following, we collect well-known results on the relation between vari-

ous metrics onM1
+(X ), which will be helpful in understanding the behavior of these

metrics, both with respect to each other and to ours. Let (X , ρ) be a separable

metric space. The Prohorov metric on (X , ρ), defined as

ς(P,Q) := inf{ǫ > 0 : P(A) ≤ Q(Aǫ) + ǫ, ∀Borel sets A},

metrizes the weak topology on M1
+(X ) [23, Theorem 11.3.3], where P,Q ∈M1

+(X )

and Aǫ := {y ∈ X : ρ(x, y) < ǫ for some x ∈ A}. Since the Dudley metric is

related to the Prohorov metric as

1

2
β(P,Q) ≤ ς(P,Q) ≤ 2

√
β(P,Q),

it also metrizes the weak topology on M1
+(X ) [23, Theorem 11.3.3]. W and TV

are related to the Prohorov metric as [33, Theorem 2]

ς2(P,Q) ≤ W (P,Q) ≤ (diam(X ) + 1)ς(P,Q), (5.41)

and

ς(P,Q) ≤ 1

2
TV (P,Q).

This means W and TV are stronger than ς, while W and ς are equivalent (i.e.,

induce the same topology) when X is bounded. By Theorem 4 in [33], TV and W

are related as

W (P,Q) ≤ diam(X )

2
TV (P,Q),

which means W and TV are comparable if X is bounded. See [71, Chapter 19,

Theorem 2.4] and [33] for further detail on the relationship between various metrics

on M1
+(X ).

Let us now consider a sequence of probability measures on R, Pn := 1
n
δn +(

1− 1
n

)
δ0 and let P := δ0. It can be shown that β(Pn,P) → 0 as n → ∞ which
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means Pn
w→ P, while W (Pn,P) = 1 and TV (Pn,P) = 1 for all n. γk(Pn,P) can be

computed as

γ2k(Pn,P) =
1

n2

∫∫

R

k(x, y) d(δ0−δn)(x) d(δ0−δn)(y) =
k(0, 0) + k(n, n)− 2k(0, n)

n2
.

If k is, e.g., a Gaussian, Laplacian or inverse multiquadratic, then γk(Pn,P) → 0

as n → ∞. This example shows that γk is weaker than W and TV . It also

shows that, for certain choices of k, γk behaves similarly to β, which leads to

the aforementioned questions: What is the general behavior of γk compared to

other metrics? When does γk metrize the weak topology on M1
+(X )? In other

words, depending on k, how weak or strong is γk compared to other metrics on

M1
+(X )? Understanding the answer to these questions is important both in theory

and practice. If k is such that γk metrizes the weak topology on M1
+(X ), then it

can be used as a theoretical tool in probability theory, similar to the Prohorov and

Dudley metrics. On the other hand, the answer to these questions is critical in

applications as it will have a bearing on the choice of kernels to be used.

With the above motivation, we first compare γk to β,W and TV . Since β is

equivalent to ς and TV is related to KL-divergence (through Pinsker’s inequality),

we do not compare γk to ς and KL-divergence.

Theorem 5.22 (Comparison of γk to β, W and TV ). Assume supx∈X k(x, x) ≤
C <∞, where k is measurable on X . Let

ρ(x, y) = ‖k(·, x)− k(·, y)‖H. (5.42)

Then, for any P,Q ∈M1
+(X ),

(i) γk(P,Q) ≤W (P,Q) ≤
√
γ2k(P,Q) + 4C if (X , ρ) is separable.

(ii) γk(P,Q)

(1+
√
C)

≤ β(P,Q) ≤ 2(γ2k(P,Q) + 4C)
1
3 if (X , ρ) is separable.

(iii) γk(P,Q) ≤
√
C TV (P,Q).

Proof. (i) When (X , ρ) is separable, W (P,Q) = W1(P,Q) has a coupling formula-

tion [23, p. 420], given as

W (P,Q) = inf
µ∈L(P,Q)

∫∫

X
ρ(x, y) dµ(x, y), (5.43)
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where P,Q ∈ {P ∈M1
+(X ) :

∫
X ρ(x, y) dP(y) <∞, ∀ x ∈ X}. In our case ρ(x, y) =

‖k(·, x) − k(·, y)‖H. In addition, (X , ρ) is bounded, which means (5.43) holds for

all P,Q ∈ M1
+(X ). The lower bound therefore follows from (5.37). The upper

bound can be obtained as follows. Consider W (P,Q) = infµ∈L(P,Q)

∫∫
X ‖k(·, x) −

k(·, y)‖H dµ(x, y), which can be bounded as

W (P,Q) ≤
∫∫

X
‖k(·, x)− k(·, y)‖H dP(x) dQ(y)

(a)

≤
[∫∫

X
‖k(·, x)− k(·, y)‖2H dP(x) dQ(y)

]1
2

≤
[∫

X
k(x, x) d(P+Q)(x)− 2

∫∫

X
k(x, y) dP(x) dQ(y)

]1
2

≤
[
γ2k(P,Q) +

∫∫

X
(k(x, x)− k(x, y)) d(P⊗ P+Q⊗Q)(x, y)

] 1
2

≤
√
γ2k(P,Q) + 4C, (5.44)

where we have used Jensen’s inequality [26, p. 109] in (a).

(ii) Let F := {f : ‖f‖H <∞} and G := {f : ‖f‖BL <∞}. For f ∈ F, we have

‖f‖BL = sup
x 6=y

|f(x)− f(y)|
ρ(x, y)

+ sup
x∈X

|f(x)|

= sup
x 6=y

|〈f, k(·, x)− k(·, y)〉H|
‖k(·, x)− k(·, y)‖H

+ sup
x∈X

|〈f, k(·, x)〉H|

≤ (1 +
√
C)‖f‖H <∞,

which implies f ∈ G and, therefore, F ⊂ G. Define Pf :=
∫
X f dP. For any

P,Q ∈M1
+(X ),

γk(P,Q) = sup{|Pf −Qf | : f ∈ Fk}
≤ sup{|Pf −Qf | : ‖f‖BL ≤ (1 +

√
C), f ∈ F}

≤ sup{|Pf −Qf | : ‖f‖BL ≤ (1 +
√
C), f ∈ G}

= (1 +
√
C)β(P,Q).

The upper bound is obtained as follows. For any P,Q ∈ M1
+(X ), by Markov’s

inequality [26, Theorem 6.17], for all ǫ > 0, we have

ǫ2µ(‖k(·, X)− k(·, Y )‖H > ǫ) ≤
∫∫

X
‖k(·, x)− k(·, y)‖2H dµ(x, y),
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where X and Y are distributed as P and Q respectively. Choose ǫ such that

ǫ3 =
∫∫

X ‖k(·, x) − k(·, y)‖2H dµ(x, y), such that µ(‖k(·, X) − k(·, Y )‖H > ǫ) ≤ ǫ.

From the proof of Theorem 11.3.5 in [23], when (X , ρ) is separable, we have

µ(ρ(X, Y ) ≥ ǫ) < ǫ ⇒ ς(P,Q) ≤ ǫ,

which implies that

ς(P,Q) ≤
(

inf
µ∈L(P,Q)

∫∫

X
‖k(·, x)− k(·, y)‖2H dµ(x, y)

)1
3

≤
(∫∫

X
‖k(·, x)− k(·, y)‖2H dP(x) dQ(y)

)1
3 (b)

≤
(
γ2k(P,Q) + 4C

) 1
3 ,

where (b) follows from (5.44). The result follows from (5.41).

(iii) See the proof of Proposition 5.19(ii).

Remark 5.23. (a) First, note that, since k is bounded, (X , ρ) is a bounded metric

space. In addition, the metric, ρ, which depends on the kernel as in (5.42), is a

Hilbertian metric (see footnote 7) on X . A popular example of such a metric is

ρ(x, y) = ‖x− y‖2, which can be obtained by choosing X to be a compact subset of

Rd and k(x, y) = 〈x, y〉.

(b) Theorem 5.22 shows that γk is weaker than β, W and TV for the assumptions

being made on k and ρ. Note that the result holds irrespective of whether or not the

kernel is characteristic, as we have not assumed anything about the kernel except

it being measurable and bounded. Also, it is important to remember that the result

holds when ρ is Hilbertian, as mentioned in (5.42) (see Remark 5.23(d)).

(c) Apart from showing that γk is weaker than β, W and TV , the result in The-

orem 5.22 can be used to bound these metrics in terms of γk. For β, which is

primarily of theoretical interest, we do not know a closed form expression, and

likewise a closed form expression for W is known only for R [84]—see footnote 19.

Since γk is easy to compute (see (3.5) and (3.6)), bounds on W can be obtained

from Theorem 5.22 in terms of γk. A closed form expression for TV is available

if P and Q have Radon-Nikodym derivatives w.r.t. a σ-finite measure. However,

from Theorem 5.22, a simple lower bound can be obtained on TV in terms of γk
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for any P,Q ∈M1
+(X ).

(d) In Theorem 5.22, the kernel is fixed and ρ is defined as in (5.42), which is

a Hilbertian metric. On the other hand, suppose a Hilbertian metric ρ is given.

Then the associated kernel k can be obtained from ρ [8, Chapter 3, Lemma 2.1] as

k(x, y) =
1

2
[ρ2(x, x0) + ρ2(y, x0)− ρ2(x, y)], x, y, x0 ∈ X ,

which can then be used to compute γk.

The discussion so far has been devoted to relating γk to β, W and TV to

understand the strength or weakness of γk w.r.t. these metrics. In a next step, we

address the second question of when γk metrizes the weak topology on M1
+(X ).

This question would have been answered had the result in Theorem 5.22 shown

that under some conditions on k, γk is equivalent to β. Since Theorem 5.22 does

not help in this regard, we address the question as follows.

Theorem 5.24. Let X be an LCH space (that is also Polish) and k be c0-universal.

Then, the topology induced by γk coincides with the weak topology on M1
+(X ).

Proof. We need to show that for measures P,P1,P2, . . . ∈ M1
+(X ), Pn

w→ P if and

only if γk(Pn,P) → 0 as n→ ∞. Define Pf :=
∫
X f dP. One direction is trivial as

Pn
w→ P, i.e., Pnf → Pf, ∀ f ∈ Cb(X ) implies Pnf → Pf, ∀ f ∈ H and therefore

γk(Pn,P) → 0 as n → ∞. We prove the other direction as follows. Since k is

c0-universal, H is dense in C0(X ) w.r.t. ‖ · ‖∞, i.e., for any f ∈ C0(X ) and every

ǫ > 0, there exists a g ∈ H such that ‖f − g‖∞ ≤ ǫ. Therefore,

|Pnf − Pf | = |Pn(f − g) + P(g − f) + (Png − Pg)|
≤ Pn|f − g|+ P|f − g|+ |Png − Pg|
≤ 2ǫ+ |Png − Pg|
(a)

≤ 2ǫ+ ‖g‖Hγk(Pn,P),

where we used Proposition 3.2 in (a) and Pf :=
∫
X f dP. Since γk(Pn,P) → 0

as n → ∞ and ǫ is arbitrary, |Pnf − Pf | → 0 for any f ∈ C0(X ). The result

follows from [8, Corollary 4.3], which says that if Pnf → Pf, ∀ f ∈ C0(X ), then

Pnf → Pf, ∀ f ∈ Cb(X ), i.e., Pn
w→ P.
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Theorem 5.24 shows that if k is c0-universal, then MMD induces the same

topology as induced by the Prohorov and Dudley metrics and therefore is equivalent

to both these metrics. This means that, although k being characteristic is sufficient

to guarantee γk being a metric, a stronger condition on k, i.e., k being c0-universal

is required for γk to metrize the weak topology on M1
+(X ).

5.4 Discussion

In this chapter, we have investigated the benefits and drawbacks of MMD in

comparison to φ-divergences and other IPMs. We showed that: (a) the empirical

estimator of MMD is easy to implement as it can be obtained in a closed form

compared to those of KL-divergence, Kantorovich and Dudley metrics and (b) the

empirical estimator of MMD has a better rate of convergence compared to those

of these other metrics, though all these estimators are strongly consistent. On

the other hand, MMD is weaker than the Kantorovich metric and KL-divergence

which can be advantageous or disadvantageous depending on the problem at hand.

There are couple of interesting problems yet to be explored in connection

with this work: (i) While we used empirical estimators for the estimation of W , β

and γk, it is not clear whether the obtained rates are optimal in the minimax sense

as the minimax rate for estimating W , β and γk has not been established and (ii)

estimation of the Fortet-Mourier metric along with the convergence analysis.
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6 Choice of Characteristic

Kernel and Two-Sample Test

In Chapter 1 and Section 5.2.2, we have impressed on the importance of

using characteristic kernels in applications like hypothesis testing, binary classifi-

cation, etc., the various characterizations for which are provided in Chapters 3 and

4. Let us consider the Gaussian kernel on Rd, i.e., kσ(x, y) = exp(−σ‖x−y‖22), σ ∈
R+, which is shown to be characteristic for any σ ∈ R+, the bandwidth parameter.

This means {kσ : σ ∈ R+} is the family of Gaussian kernels and {γkσ : σ ∈ R+}
is the family of metrics on M1

+(R
d) indexed by the kernel parameter, σ. However,

in practice, one would prefer a single number that defines the distance between P

and Q. The question therefore to be addressed is how to choose appropriate σ.

The choice of σ has important implications on the statistical aspect of γkσ . Note

that as σ → 0, kσ → 1 and as σ → ∞, kσ → 0 a.e., which means γkσ(P,Q) → 0

as σ → 0 or σ → ∞ for all P,Q ∈ M1
+(R

d) (this behavior is also exhibited by

kσ(x, y) = exp(−σ‖x − y‖1) and kσ(x, y) = σ2/(σ2 + ‖x − y‖22), which are also

characteristic). This means choosing sufficiently small or sufficiently large σ (de-

pending on P and Q) makes γkσ(P,Q) arbitrarily small. Therefore, σ has to be

chosen appropriately in applications to effectively distinguish between P and Q.

This chapter is organized as follows. In Section 6.1, we propose a gener-

alization of γk (called as the generalized MMD), yielding a new distance measure

between P and Q, which addresses the questions raised above. Since the metric has

to be applicable in practice, we show in Section 6.2 that an empirical estimator of

the generalized MMD based on finite samples is strongly consistent and establish

its rate of convergence. Finally, in Section 6.3, we provide a simple experimen-

114
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tal demonstration that the generalized MMD can be applied in practice to the

problem of homogeneity testing. Specifically, we show that when two distributions

differ on particular length scales, the kernel selected by the generalized MMD is

appropriate to this difference, and the resulting hypothesis test outperforms the

heuristic kernel choice employed in earlier studies [37].

6.1 Generalizing the MMD for Classes of Char-

acteristic Kernels

Let us consider the following modification to γk, which yields a pseudometric

on M1
+(X ),

γ(P,Q) = sup
k∈K

γk(P,Q) = sup
k∈K

∥∥∥∥
∫

X
k(·, x) dP(x)−

∫

X
k(·, x) dQ(x)

∥∥∥∥
H

, (6.1)

where K is a family of pd kernels. Note that γ(P,Q) is the maximal RKHS distance

between P and Q over the family, K, where examples of K include:

(a1) Kg :=
{
e−σ‖x−y‖

2
2 , x, y ∈ Rd : σ ∈ R+

}
.

(a2) Kl :=
{
e−σ‖x−y‖1 , x, y ∈ Rd : σ ∈ R+

}
.

(a3) Kψ :=
{
e−σψ(x,y), x, y ∈ X : σ ∈ R+

}
, where −ψ is a conditionally pd kernel

on X × X .

(a4) Krbf :=
{∫∞

0
e−λ‖x−y‖

2
2 dµσ(λ), x, y ∈ Rd, µσ ∈ M̃+

b (R+) : σ ∈ R+

}
, where

M̃+
b (R+) :=

{
µ ∈M+

b (R+) | supp(µ) 6= {0}
}
.

(a5) Klin :=
{
kλ =

∑s
j=1 λjkj | kλ is pd,

∑s
j=1 λj = 1

}
, which is the linear com-

bination of pd kernels {kj}sj=1.

(a6) Kcon :=
{
kλ =

∑s
j=1 λjkj | λj ≥ 0, ∀ j, ∑s

j=1 λj = 1
}
, which is the convex

combination of pd kernels {kj}sj=1.

It is easy to check that if any k ∈ K is characteristic, then γ is a metric onM1
+(X ).

From the definition of γ(P,Q), it is clear that we use k∗ = arg sup{γk(P,Q) : k ∈
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K} to compute γk∗(P,Q), which means for K in (a1)–(a4), we choose

σ∗ = arg sup{γkσ(P,Q) : σ ∈ R+}

to compute γkσ∗ . Therefore, the definition of γ(P,Q) in (6.1) addresses the ques-

tions that we raised before.

The proposal of γ(P,Q) in (6.1) can be motivated by the connection that

we have established in Section 5.2.2 between γk and the Parzen window classifier.

Since the Parzen window classifier depends on the kernel, k, one can propose

to learn the kernel like in support vector machines [46], wherein the kernel is

chosen such that RL
Fk

in Theorem 5.5 is minimized over k ∈ K, i.e., infk∈KR
L
Fk

=

− supk∈K γk(P,Q) = −γ(P,Q). A similar motivation for γ can be provided based

on Proposition 5.6 as learning the kernel in a hard-margin support vector machine

by maximizing its margin.

The idea and validity behind the proposal of γ in (6.1) can also be under-

stood from a Bayesian perspective, where we define a nonnegative finite measure

η over K, and average γk over that measure, i.e.,

α(P,Q) :=

∫

K

γk(P,Q) dη(k).

This also yields a pseudometric on M1
+(X ). That said, α(P,Q) ≤ η(K)γ(P,Q) for

any P, Q, which means that, if P and Q can be distinguished by α, then they can

be distinguished by γ, but not vice-versa. In this sense, γ is stronger than α and

therefore studying γ makes sense. One further complication with the Bayesian

approach is in defining a sensible η over K. Note that γk0 can be obtained by

defining η(k) = δ(k − k0) in α(P,Q).

At this point, we briefly discuss the issue of normalized vs. unnormalized

kernel families, K in (6.1). We say a translation invariant kernel, k on Rd is

normalized if
∫
Rd ψ(y) dy = c (some positive constant independent of the kernel

parameter), where k(x, y) = ψ(x − y). K is a normalized kernel family if every

kernel in K is normalized. If K is not normalized, we say it is unnormalized. For

example, it is easy to see that Kg and Kl are unnormalized kernel families. Let us

consider the normalized Gaussian family, Kn
g = {(σ/π)d/2 exp(−σ‖x− y‖22), x, y ∈
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Rd : σ ∈ [σ0,∞)}. It can be shown that for any kσ, kτ ∈ Kn
g , 0 < σ < τ < ∞,

we have γkσ(P,Q) ≥ γkτ (P,Q), which means, γ(P,Q) = γσ0(P,Q). Therefore, the

generalized MMD reduces to a single kernel MMD. A similar result also holds for

the normalized inverse-quadratic kernel family, {
√

2σ2/π(σ2 + ‖x− y‖22)−1, x, y ∈
R : σ ∈ [σ0,∞)}. These examples show that the generalized MMD definition is

usually not very useful if K is a normalized kernel family. In addition, σ0 should be

chosen beforehand, which is equivalent to heuristically setting the kernel parameter

in γk. Note that σ0 cannot be zero because in the limiting case of σ → 0, the kernels

approach a Dirac distribution, which means the limiting kernel is not bounded

and so the definition of MMD does not hold (see Proposition 3.2). Therefore,

we restrict ourselves to unnormalized kernel families to render the definition of

generalized MMD in (6.1) useful.

6.2 Estimation of γ: Consistency and Rate of

Convergence

Given P and Q, let us consider the computation of γ(P,Q), i.e.,

γ2(P,Q) = sup
k∈K

γ2k(P,Q)
(3.6)
= sup

k∈K

∫ ∫

X
k(x, y) d(P−Q)(x) d(P−Q)(y).

Since the computation of γ(P,Q) is not straightforward as it involves taking supre-

mum over k ∈ K, similar to the case with γk(P,Q), we consider the approximation

of γ(P,Q) as γ(Pm,Qn) and hope that γ(Pm,Qn) is strongly consistent. The strong

consistency of γ(Pm,Qn) is also required in statistical applications where P and Q

are known only through i.i.d. samples {X(1)
j }mj=1 and {X(2)

j }nj=1 respectively. For

K = {k}, where k is measurable and bounded, [37] has shown that γk(Pm,Qn) is

a
√
mn/(m+ n)-consistent estimator of γk(P,Q)—also see Corollary 5.12(ii). Un-

der certain conditions on K, in the following we establish the strong consistency

of γ(Pm,Qn). Before that, we consider the computation of γ(Pm,Qn), i.e.,

γ2(Pm,Qn) = sup
k∈K

[
m∑

l,j=1

k(X
(1)
l , X

(1)
j )

m2
+

n∑

l,j=1

k(X
(2)
l , X

(2)
j )

n2
− 2

m,n∑

l,j=1

k(X
(1)
l , X

(2)
j )

mn

]
.
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In the following, we present examples on the computation of γ(Pm,Qn) for certain

choices of K.

Example 6.1. Suppose K = Kg. Then γ(Pm,Qn) can be written as

γ2(Pm,Qn) = sup
σ∈R+

[
1

m2

m∑

l,j=1

e
−σ

∥∥∥X(1)
l −X(1)

j

∥∥∥
2

2 +
1

n2

n∑

l,j=1

e
−σ

∥∥∥X(2)
l −X(2)

j

∥∥∥
2

2

− 2

mn

m∑

l=1

n∑

j=1

e
−σ

∥∥∥X(1)
l −X(2)

j

∥∥∥
2

2

]
,

which is the maximization of a non-convex objective over the constraint set, Σ :=

{σ : σ ≥ 0}—similar is the case for K = Kl and K = Krbf . Therefore, γ(Pm,Qn)

cannot be computed in a simple closed form unlike γk(Pm,Qn) (in this case Σ =

{σ0} for some σ0 ≥ 0).

Example 6.2. Suppose K = Kcon. Then γ(Pm,Qn) becomes

γ2(Pm,Qn) = sup

{
s∑

j=1

λjγ
2
kj
(Pm,Qn) :

s∑

j=1

λj = 1, λj ≥ 0, ∀ j
}

= max
j∈{1,...,s}

γ2kj(Pm,Qn).

Example 6.3. Suppose K = Klin. Then

γ2(Pm,Qn) = sup

{
s∑

j=1

λjγ
2
kj
(Pm,Qn) :

s∑

j=1

λjkj is pd,
s∑

j=1

λj = 1

}
,

which is a semidefinite program as it is the maximization of a linear objective over

a pd cone.

Now, we analyze the convergence of γ(Pm,Qn), for which we begin with the

following definition.

Definition 6.4 (Rademacher chaos complexity). Let G be a class of functions on

X × X and {̺j}nj=1 be independent Rademacher random variables, i.e., Pr(̺j =

1) = Pr(̺j = −1) = 1
2
. The homogeneous Rademacher chaos process of order two

with respect to {̺j}nj=1 is defined as

{
1

n

n∑

l<j

̺l̺jg(Xl, Xj) : g ∈ G

}
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for some {Xj}nj=1 ⊂ X . The Rademacher chaos complexity over G is defined as

Un(G; {Xj}nj=1) := E sup
g∈G

∣∣∣∣∣
1

n

n∑

l<j

̺l̺jg(Xl, Xj)

∣∣∣∣∣ .

The following result provides a probabilistic bound for the deviation of

γ(Pm,Qn) from γ(P,Q) in terms of the Rademacher chaos complexity.

Theorem 6.5 (Consistency of γ(Pm,Qn)). Let every k ∈ K be measurable and

bounded with ν := supk∈K,x∈X
√
k(x, x) <∞. Then, with probability at least 1−δ,

|γ(Pm,Qn)− γ(P,Q)| ≤

√
8Um(K; {X(1)

j }mj=1)

m
+

√
8Un(K; {X(2)

j }nj=1)

n

+

(
2ν + 3ν

√
2 log

4

δ

)(
1√
m

+
1√
n

)
. (6.2)

Proof. Define Pf :=
∫
X f dP. Since

γ(P,Q) = sup
k∈K

γk(P,Q) = sup
k∈K

sup
‖f‖Hk

≤1

|Pf −Qf | = γF(P,Q),

where F = ∪k∈K{f : ‖f‖Hk
≤ 1}, the result follows by invoking Theorem 5.11,

where we use

Rm(F; {X(1)
j }mj=1) = E sup

f∈F

∣∣∣∣∣
1

m

m∑

j=1

̺jf(X
(1)
j )

∣∣∣∣∣

= E sup
k∈K

sup
‖f‖Hk

≤1

∣∣∣∣∣
1

m

m∑

j=1

̺j

〈
f, k(·, X(1)

j )
〉
Hk

∣∣∣∣∣

= E sup
k∈K

sup
‖f‖Hk

≤1

∣∣∣∣∣∣
1

m

〈
f,

m∑

j=1

̺jk(·, X(1)
j )

〉

Hk

∣∣∣∣∣∣

= E sup
k∈K

∥∥∥∥∥
1

m

m∑

j=1

̺jk(·, X(1)
j )

∥∥∥∥∥
Hk

=
1

m
E sup
k∈K

√√√√
∣∣∣∣∣
m∑

l,j=1

̺l̺jk(X
(1)
l , X

(1)
j )

∣∣∣∣∣

≤
√

2

m
E

√√√√sup
k∈K

∣∣∣∣∣
1

m

m∑

l<j

̺l̺jk(X
(1)
l , X

(1)
j )

∣∣∣∣∣+
√
ν2

m
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(⋆)

≤
√

2

m

√√√√E sup
k∈K

∣∣∣∣∣
1

m

m∑

l<j

̺l̺jk(X
(1)
l , X

(1)
j )

∣∣∣∣∣+
√
ν2

m

=

√
2Um(K; {X(1)

j }mj=1)

m
+

√
ν2

m
.

Here, we have invoked Jensen’s inequality [26, p. 109] in (⋆).

From (6.2), it is clear that if Um(K; {X(1)
j }mj=1) = OP(1) and Un(K; {X(2)

j }nj=1) =

OQ(1), then |γ(Pm,Qn)− γ(P,Q)| = OP,Q(
√

(m+ n)/mn), which by the Borel-

Cantelli lemma [23, Theorem 8.3.4] yields γ(Pm,Qn)
a.s.→ γ(P,Q). The following

result provides a bound on Um(K; {X(1)
j }mj=1) in terms of the entropy integral.

Lemma 6.6 (Entropy bound). For any K as in Theorem 6.5 with 0 ∈ K, there

exists a universal constant C such that

Um(K; {X(1)
j }mj=1) ≤ C

∫ ν2

0

logN (K, D, ǫ) dǫ, (6.3)

where D(k1, k2) =
1
m

(∑m
l<j(k1(X

(1)
l , X

(1)
j )− k2(X

(1)
l , X

(1)
j ))2

) 1
2
. N (K, D, ǫ) repre-

sents the ǫ-covering number of K with respect to the metric D.

Proof. From [3, Proposition 2.2, Proposition 2.6] (also see [18, Corollary 5.1.8]),

we have that there exists a universal constant C <∞ such that

Um(K; {X(1)
j }mj=1) ≤ C

∫ ν2

0

logN (K, D, ǫ) dǫ,

where

D2(k1, k2) = E

(
1

m

n∑

l<j

̺l̺jh(X
(1)
l , X

(1)
j )

)2

=
1

m2
E

(
m∑

l<j,r<s

̺l̺j̺r̺sh(X
(1)
l , X

(1)
j )h(X(1)

r , X(1)
s )

)

=
1

m2

m∑

l<j

h2(X
(1)
l , X

(1)
j ),

and h(X
(1)
l , X

(1)
j ) = k1(X

(1)
l , X

(1)
j )− k2(X

(1)
l , X

(1)
j ).
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Assuming K to be a Vapnik-Červonenkis (VC)-subgraph class, the following

result, as a corollary to Lemma 6.6 provides an estimate of Um(K; {X(1)
j }mj=1).

Before presenting the result, we first provide the definition of a VC-subgraph class

(see [86, Section 2.6.2]).

Definition 6.7 (VC-subgraph class). Let C be a collection of subsets of a set X
and let {x1, . . . , xn} be an arbitrary set of n points. The VC-index, V (C) of the

class C is defined as20

V (C) = inf

{
n : max

x1,...,xn
∆n(C, x1, . . . , xn) < 2n

}
,

where

∆n(C, x1, . . . , xn) = |{C ∩ {x1, . . . , xn} : C ∈ C}| .

The subgraph of a function g : X × R is the subset of X × R given by {(x, t) :

t < g(x)}. A collection G of measurable functions on a sample space is called a

VC-subgraph class, if the collection of all subgraphs of the functions in G forms a

VC-class of sets (in X × R).21

Corollary 6.8 (Rademacher chaos complexity for VC-subgraph). Suppose K is a

VC-subgraph class with V (K) being the VC-index. Assume K satisfies the condi-

tions in Theorem 6.5 and 0 ∈ K. Then

Um(K; {X(1)
j }mj=1) ≤ Cν2 log

(
C1V (K)

(
16e1+8ν−1/2

)V (K)
)
, (6.4)

for some universal constants C and C1.

Proof. The result follows by bounding the uniform covering number of the VC-

subgraph class, K. By [86, Theorem 2.6], we have

N (K, D, ǫ) ≤ C1V (K)(16ν2ǫ−2e)V (K).

20An arbitrary set of n points An := {x1, . . . , xn} possesses 2n subsets. C is said to pick out
a certain subset, B from An if B = An ∩ C for C ∈ C. C is said to shatter An if each of its 2n

subsets can be picked out in this manner. The VC-index of C is the smallest n for which no set
of size n is shattered by C.

21The VC-index (also called the VC-dimension) of a VC-subgraph class, G is the same as the
pseudo-dimension of G. See [2, Definition 11.1] for details.
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Therefore, from (6.3), we have

Um(K; {X(1)
j }mj=1) ≤ C

∫ ν2

0

logN (K, D, ǫ) dǫ

≤ ν2 log
(
C1V (K)(16e)V (K)

)
+ 4V (K)C

∫ ν2

0

log

(√
ν√
ǫ

)
dǫ

(⋆)

≤ ν2 log
(
C1V (K)(16e)V (K)

)
+ 8V (K)Cν3/2

= Cν2 log

(
C1V (K)

(
16e1+8ν−1/2

)V (K)
)
,

where we have used log x ≤ x in (⋆).

Using (6.4) in (6.2), we have |γ(Pm,Qn)− γ(P,Q)| = OP,Q(
√
(m+ n)/mn)

and by the Borel-Cantelli lemma [23, Theorem 8.3.4], |γ(Pm,Qn)− γ(P,Q)| a.s.→ 0.

Now, the question reduces to which of the kernel classes, K have V (K) < ∞. [93,

Lemma 12] showed that V (Kg) = 1 (also see [94]) and Um(Krbf ; {X(1)
j }mj=1) ≤

C2Um(Kg; {X(1)
j }mj=1), where C2 < ∞. It can be shown that V (Kψ) = 1 and

V (Kl) = 1. [74, Lemma 7] has shown that V (Kcon) ≤ V (Klin) ≤ l. Since all

these classes satisfy the conditions of Theorem 6.5 and Corollary 6.8, they pro-

vide consistent estimates of γ(P,Q) for any P,Q ∈ M1
+(X ). Examples of kernels

on Rd that are covered by these classes include the Gaussian, Laplacian, inverse

multiquadratics, Matérn class etc.

6.3 Experiments

In this section, we present a benchmark experiment that illustrates the

generalized MMD proposed in Section 6.1 is preferred above the single kernel

MMD where the kernel parameter is set heuristically. The experimental setup

is as follows.

Let p = N(0, σ2
p), a normal distribution in R with zero mean and variance,

σ2
p. Let q be the perturbed version of p, given as q(x) = p(x)(1 + sin νx). Here

p and q are the densities associated with P and Q respectively. It is easy to see

that q differs from p at increasing frequencies with increasing ν. Let k(x, y) =

exp(−(x − y)2/σ). Now, the goal is that given random samples drawn i.i.d. from
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P and Q (with ν fixed), we would like to test H0 : P = Q vs. H1 : P 6= Q.

The idea is that as ν increases, it will be harder to distinguish between P and

Q for a fixed sample size. Therefore, using this setup we can verify whether

the adaptive bandwidth selection achieved by γ (as the test statistic) helps to

distinguish between P and Q at higher ν compared to γk with a heuristic σ. To

this end, using γ(Pm,Qn) and γk(Pm,Qn) (with various σ) as test statistics Tmn,

we design a test that returns H0 if Tmn ≤ cmn, and H1 otherwise. The problem

therefore reduces to finding cmn. cmn is determined as the (1− α) quantile of the

asymptotic distribution of Tmn under H0, which therefore fixes the type-I error

(the probability of rejecting H0 when it is true) to α. The consistency of this test

under γk (for any fixed σ) is proved in [37]. A similar result can be shown for γ

under some conditions on K. We skip the details here.

In our experiments, we set m = n = 1000, σ2
p = 10 and draw two sets of

independent random samples from Q. The distribution of Tmn is estimated by

bootstrapping on these samples (250 bootstrap iterations are performed) and the

associated 95th quantile (we choose α = 0.05) is computed. Since the performance

of the test is judged by its type-II error (the probability of accepting H0 when

H1 is true), we draw a random sample, one each from P and Q and test whether

P = Q. This process is repeated 300 times, and estimates of type-I and type-II

errors are obtained for both γ and γk. 14 different values for σ are considered on

a logarithmic scale of base 2 with exponents (−3,−2,−1, 0, 1, 3
2
, 2, 5

2
, 3, 7

2
, 4, 5, 6)

along with the median distance between samples as one more choice. 5 different

choices for ν are considered: (1
2
, 3
4
, 1, 5

4
, 3
2
).

Figure 6.1(a) shows the estimated type-I and type-II errors using γ as the

test statistic for varying ν. Note that the type-I error is close to its design value of

5%, while the type-II error is zero for all ν, which means γ distinguishes between

P and Q for all perturbations. Figures 6.1(b,c) show the estimates of type-I and

type-II errors using γk as the test statistic for different σ and ν. Figure 6.1(d)

shows the box plot for log σ, grouped by ν, where σ is the bandwidth selected

by γ. Figure 6.1(e) shows the box plot of the median distance between points

(which is also a choice for σ), grouped by ν. From Figures 6.1(c) and (e), it is
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easy to see that the median heuristic exhibits high type-II error for ν = 3
2
, while

γ exhibits zero type-II error (from Figure 6.1(a)). Figure 6.1(c) also shows that

heuristic choices of σ can result in high type-II errors. It is intuitive to note that as

ν increases, (which means the characteristic function of Q differs from that of P at

higher frequencies), a smaller σ is needed to detect these changes. The advantage

of using γ is that it selects σ in a distribution-dependent fashion and its behavior

in the box plot shown in Figure 6.1(d) matches with the previously mentioned

intuition about the behavior of σ with respect to ν. These results demonstrate the

validity of using γ as a distance measure in applications.
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Figure 6.1: (a) Type-I and Type-II errors (in %) for γ for varying ν. (b,c) Type-I
and type-II error (in %) for γk (with different σ) for varying ν. The dotted line
in (c) corresponds to the median heuristic, which shows that its associated type-II
error is very large at large ν. (d) Box plot of log σ grouped by ν, where σ is selected
by γ. (e) Box plot of the median distance between points (which is also a choice
for σ), grouped by ν. Refer to Section 6.3 for details.



7 Banach Space Embedding of

Probability Measures

So far, in Chapters 3–6, we have studied the embedding P 7→
∫
X k(·, x) dP(x)

and the associated pseudometric, γk on M1
+(X ), where k is a reproducing kernel

associated with an RKHS, H. The goal of this chapter is to generalize this no-

tion of RKHS embedding of probability measures to Banach spaces, in particular

reproducing kernel Banach spaces (RKBSs) [95]. This is primarily based on two

different motivations. Firstly, Banach spaces possess much richer geometric struc-

ture than Hilbert spaces in sense that any two Hilbert spaces over C of the same

dimension are isometrically isomorphic while this is not the case with Banach

spaces, e.g., for p 6= q ∈ [1,∞], Lp[0, 1] and Lq[0, 1] are not isomorphic. Therefore,

“richer” distance measures between probabilities could be obtained by embedding

them into more general spaces like an RKBS. Secondly, since we have shown the

connection between binary classification and the RKHS embedding of probability

measures (see Section 5.2.2) and since binary classification algorithms have been

studied in Banach spaces [20, 88, 95], one can obtain an alternate view of classifi-

cation in Banach spaces through the notion of probability embeddings in Banach

spaces. RKBSs were recently studied by Zhang et al. [95] in the context of develop-

ing learning algorithms in Banach spaces, wherein many RKHS based algorithms

like regularization networks, support vector machines, kernel principal component

analysis, etc., were extended to RKBS. In this chapter, we investigate how the

notion of RKHS embedding of probability measures extends to an RKBS and the

similarities/differences in the properties of an RKBS embedding compared to its

RKHS counterpart, along with its advantages/disadvantages.

126



127

The chapter is organized as follows. In Section 7.1, following [95], we provide

preliminaries of RKBS. In Section 7.2, we first derive an RKBS embedding of P

into B′ as

P 7→
∫

X
K(·, x) dP(x), (7.1)

where B is a uniformly Fréchet differentiable and uniformly convex RKBS with

K as its reproducing kernel (r.k.) and B′ is the topological dual of B. Note

that (7.1) is similar to (3.1), but more general than (3.1) as K in (7.1) need not

have to be positive definite, in fact, not even symmetric (see Section 7.1). Second,

we characterize the injectivity of (7.1) in Section 7.2.1 wherein we show that the

characterizations obtained for the injectivity of (7.1) are very similar to those

obtained for (3.1) and coincide with the latter when B is an RKHS. Based on

(7.1), we define

γK(P,Q) :=

∥∥∥∥
∫

X
K(·, x) dP(x)−

∫

X
K(·, x)Q(x)

∥∥∥∥
B′

,

which is a pseudo-metric on M1
+(X ). Third, in Section 7.2.2, we consider the em-

pirical estimation of γK(P,Q) based on finite random samples drawn i.i.d. from

P and Q and study its consistency and the rate of convergence. This is useful in

applications like two-sample tests where different P and Q are to be distinguished

based on the finite samples drawn from them and it is important that the esti-

mator is consistent for the test to be meaningful. We show that the consistency

and the rate of convergence of the estimator depend on the Rademacher type of

B′. This result coincides with the one obtained for γk when B is an RKHS (see

Corollary 5.12(ii)).

The above mentioned results, while similar to results obtained for RKHS

embeddings, are significantly more general, as they apply RKBS spaces, which

subsume RKHSs. We can therefore expect to obtain “richer” metrics γK than

when being restricted to RKHSs. On the other hand, one disadvantage of the

RKBS framework is that γK(P,Q) cannot be computed in a closed form unlike γk

(see Section 7.2.3). This could seriously limit the practical impact of these results,

as is the case with the RKBS based learning algorithms derived by [95], which

are not straightforward to implement. The proposed theory of RKBS embeddings
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of probability measures, however, does have a practical impact as closed form

solutions can be obtained in some cases. In Section 7.3, we provide concrete

examples of s.i.p. RKBS for which the RKBS embeddings and the corresponding

γK(P,Q) can be obtained in a closed form.

7.1 Preliminaries: Reproducing Kernel Banach

Spaces

In this section, we briefly review the theory of reproducing kernel Banach

spaces, which was recently studied by Zhang et al. [95] in the context of learning

in Banach spaces. Let X be a prescribed input space.

Definition 7.1 (Reproducing kernel Banach space). An RKBS B on X is a reflex-

ive Banach space of functions on X such that its topological dual B′ is isometric to

a Banach space of functions on X and the point evaluations are continuous linear

functionals on both B and B′.

Note that if B is a Hilbert space, then the above definition of RKBS co-

incides with that of an RKHS. Let (·, ·)B be a bilinear form on B × B′ wherein

(f, g∗)B := g∗(f), f ∈ B, g∗ ∈ B′. Theorem 2 in [95] shows that if B is an RKBS

on X , then there exists a unique function K : X ×X → C called the reproducing

kernel (r.k.) of B, such that the following hold:

(a1) K(x, ·) ∈ B, K(·, x) ∈ B′, x ∈ X ,

(a2) f(x) = (f,K(·, x))B, f ∗(x) = (K(x, ·), f ∗)B, f ∈ B, f ∗ ∈ B′, x ∈ X .

Note that K satisfies K(x, y) = (K(x, ·), K(·, y))B. When B is an RKHS, K is

indeed the r.k. in the usual sense. Though an RKBS has exactly one r.k., different

RKBSs may have the same r.k. (see Example 7.17 in Section 7.3) unlike an RKHS,

where no two RKHSs can have the same r.k (by the Moore-Aronszajn Theorem).

Due to the lack of inner product in B (unlike in an RKHS), Zhang et al. have

shown that the r.k. for a general RKBS can be any arbitrary function on X × X .

Therefore, to have a substitute for inner products in the Banach space setting, they



129

considered RKBS B that are uniformly Fréchet differentiable and uniformly convex

(referred to as s.i.p. RKBS) as it allows Hilbert space arguments to be carried over

to B—most importantly, an analogue to the Riesz representation theorem holds

(see Theorem 7.3)—through the notion of semi-inner-product (s.i.p.) introduced

by [50]. In the following, we first present results related to general s.i.p. spaces

(Banach spaces that are uniformly Fréchet differentiable and uniformly convex)

and then consider s.i.p. RKBS.

Definition 7.2 (S.i.p. space). A Banach space B is said to be uniformly Fréchet

differentiable if for all f, g ∈ B,

lim
t∈R,t→0

‖f + tg‖B − ‖f‖B
t

exists and the limit is approached uniformly for f, g in the unit sphere of B. B is

said to be uniformly convex if for all ǫ > 0, there exists a δ > 0 such that

‖f + g‖B ≤ 2− δ for all f, g ∈ B with ‖f‖B = ‖g‖B = 1 and ‖f − g‖B ≥ ǫ.

B is called an s.i.p. space if it is both uniformly Fréchet differentiable and uniformly

convex.

Note that uniform Fréchet differentiability and uniform convexity are prop-

erties of the norm associated with B. Giles [34, Theorem 3] has shown that if B is

an s.i.p. space, then there exists a unique function [·, ·]B : B× B → C, called the

semi-inner-product such that for all f, g, h ∈ B and λ ∈ C:

(a3) [f + g, h]B = [f, h]B + [g, h]B,

(a4) [λf, g]B = λ[f, g]B, [f, λg]B = λ[f, g]B,

(a5) [f, f ]B =: ‖f‖2B > 0 for f 6= 0,

(a6) (Cauchy-Schwartz) |[f, g]B|2 ≤ ‖f‖2B‖g‖2B,

and

lim
t∈R,t→0

‖f + tg‖B − ‖f‖B
t

=
Re([g, f ]B)

‖f‖B
, f, g ∈ B, f 6= 0,
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where Re(α) and α represent the real part and complex conjugate of a complex

number α. Note that semi-inner-products in general do not satisfy conjugate sym-

metry, [f, g]B = [g, f ]B for all f, g ∈ B and therefore are not linear in the second

argument, unless B is a Hilbert space, in which case the s.i.p. coincides with the

inner product.

Suppose B is an s.i.p. space. Then for each h ∈ B, f 7→ [f, h]B defines a

continuous linear functional on B, which can be identified with a unique element

h∗ ∈ B′, called the dual function of h. By this definition of h∗, we have h∗(f) =

(f, h∗)B = [f, h]B, f, h ∈ B. Using the structure of s.i.p., Giles [34, Theorem 6]

provided the following analogue in B to the Riesz representation theorem of Hilbert

spaces.

Theorem 7.3 ( [34]). Suppose B is an s.i.p. space. Then

(a7) (Riesz representation theorem) For each g ∈ B′, there exists a unique h ∈ B

such that g = h∗, i.e., g(f) = [f, h]B, f ∈ B and ‖g‖B′ = ‖h‖B.

(a8) B′ is an s.i.p. space with respect to the s.i.p. defined by

[h∗, f ∗]B′ := [f, h]B, f, h ∈ B

and ‖h∗‖B′ := [h∗, h∗]
1/2
B′ .

For more details on s.i.p. spaces, we refer the reader to [34]. A concrete

example of an s.i.p. space is as follows, which will prove to be useful in Section 7.2.

Let (X ,A , µ) be a measure space and B := Lp(X , µ) for some p ∈ (1,+∞). It is

an s.i.p. space with dual B′ := Lq(X , µ). For each f ∈ B, its dual element in B′ is

f ∗ =
f |f |p−2

‖f‖p−2
Lp(X ,µ)

.

Consequently, the semi-inner-product on B is

[f, g]B = g∗(f) =

∫
X fg|g|p−2 dµ

‖g‖p−2
Lp(X ,µ)

. (7.2)

Having introduced s.i.p. spaces, we now discuss s.i.p. RKBS which was studied

by [95]. Using the Riesz representation for s.i.p. spaces (see (a7)), Theorem 9
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in [95] shows that if B is an s.i.p. RKBS with K as its r.k., then there exists a

unique s.i.p. kernel G : X × X → C such that:

(a9) G(x, ·) ∈ B for all x ∈ X , K(·, x) = (G(x, ·))∗, x ∈ X ,

(a10) f(x) = [f,G(x, ·)]B, f ∗(x) = [K(x, ·), f ]B for all f ∈ B, x ∈ X .

It is clear that G(x, y) = [G(x, ·), G(y, ·)]B, x, y ∈ X . Since s.i.p. in general do not

satisfy conjugate symmetry, G need not have to be Hermitian nor pd [95, Section

4.3]. The r.k. K and the s.i.p. kernel G coincide when span{G(x, ·) : x ∈ X} is

dense in B, which is the case when B is an RKHS [95, Theorem 10]. This means

when B is an RKHS, then the conditions (a9) and (a10) reduce to the well-known

reproducing properties of an RKHS with the semi-inner-product reducing to an

inner product.

7.2 RKBS Embedding of Probability Measures

In this section, we derive and analyze the RKBS embedding of probability

measures, which generalize the theory of RKHS embeddings. First, we would like

to remind the reader that the RKHS embedding in (3.1) can be derived by choosing

F = {f : ‖f‖H ≤ 1} in (3.2). Similar to the RKHS case, in Theorem 7.5, we show

that the RKBS embeddings can be obtained by choosing F = {f : ‖f‖B ≤ 1} in

(3.2). Interestingly, though B does not have an inner product, it can be seen that

the structure of semi-inner-product is sufficient enough to generate an embedding

similar to (3.1). Before that, we need the following supplementary result (similar

to Lemma 3.1), which will be useful to prove Theorem 7.5.

Lemma 7.4. Let B be an s.i.p. RKBS defined on a measurable space X with G

as the s.i.p. kernel and K as the reproducing kernel with both G and K being

measurable and G bounded. Suppose µ be a finite signed measure on X . Then, for

any f ∈ B, we have

∫

X
f(x) dµ(x) =

∫

X
[K(·, x), f ∗]

B′ dµ(x) =

[∫

X
K(·, x) dµ(x), f ∗

]

B′

. (7.3)
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Proof. The idea of the proof is similar to that of Lemma 3.1. Consider Tµ[f ] =∫
X f(x) dµ(x). Since B is an s.i.p. RKBS, then by (a10) there exists a unique G

such that f(x) = [f,G(x, ·)]B
(a8),(a9)
= [K(·, x), f ∗]B′. Therefore, we have

|Tµ[f ]|
(a10)
=

∣∣∣∣
∫

X
[f,G(x, ·)]B dµ(x)

∣∣∣∣ ≤
∫

X
|[f,G(x, ·)]B| d|µ|(x)

(a6)

≤ ‖f‖B
∫

X
[G(x, ·), G(x, ·)]1/2

B
d|µ|(x)

(a10)
= ‖f‖B

∫

X

√
G(x, x) d|µ|(x) <∞,

which means Tµ ∈ B′. By (a7), there exists a unique λµ ∈ B such that Tµ = λ∗µ,

i.e., Tµ[f ] = [f, λµ]B, f ∈ B. In other words,
∫

X
[f,G(x, ·)]B dµ(x) =

∫

X
f(x) dµ(x) = Tµ[f ] = [f, λµ]B

(a8)
=
[
λ∗µ, f

∗]
B′ . (7.4)

Choosing f = K(y, ·) ∈ B for some y ∈ X in (7.4) gives
∫

X
[K(y, ·), G(x, ·)]B dµ(x) =

∫

X
K(y, x) dµ(x) = [K(y, ·), λµ]B

(a10)
= λ∗µ(y).

This means λ∗µ =
∫
X K(·, x) dµ(x) and the result follows.

Theorem 7.5. Let B be an s.i.p. RKBS defined on a measurable space X with

G as the s.i.p. kernel and K as the reproducing kernel with both G and K being

measurable. Let F = {f : ‖f‖B ≤ 1} and G be bounded. Then

γK(P,Q) := γF(P,Q) =

∥∥∥∥
∫

X
K(·, x) dP(x)−

∫

X
K(·, x) dQ(x)

∥∥∥∥
B′

. (7.5)

Proof. Consider

γF(P,Q) = sup
‖f‖B≤1

∣∣∣∣
∫

X
f dP−

∫

X
f dQ

∣∣∣∣
(7.3)
= sup

‖f‖B≤1

∣∣∣∣
[∫

X
K(·, x) dP(x)−

∫

X
K(·, x) dQ(x), f ∗

]

B′

∣∣∣∣
(a8)
= sup

‖f∗‖
B′≤1

∣∣∣∣
[∫

X
K(·, x) dP(x)−

∫

X
K(·, x) dQ(x), f ∗

]

B′

∣∣∣∣

(a6)
=

∥∥∥∥
∫

X
K(·, x) dP(x)−

∫

X
K(·, x) dQ(x)

∥∥∥∥
B′

,

therefore proving the result.
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Based on Theorem 7.5, it is clear that P can be seen as being embedded

into B′ as

P 7→
∫

X

K(·, x) dP(x) (7.6)

and γK(P,Q) is the distance between the embeddings of P and Q. Therefore, we

arrive at an embedding which looks similar to (3.1) and coincides with (3.1) when

B is an RKHS.

Given these embeddings, two questions that need to be answered for these

embeddings to be practically useful are: (⋆) When is the embedding injective? and

(⋆⋆) Can γK(P,Q) in (7.5) be estimated consistently and computed efficiently from

finite random samples drawn i.i.d. from P and Q? We answered these questions

in Chapters 3–5 when B is an RKHS. The significance of (⋆) is that if (7.6) is

injective, then such an embedding can be used to differentiate between different P

and Q, which can then be used in applications like two-sample test to differentiate

between P and Q based on samples drawn i.i.d. from them if the answer to (⋆⋆) is

affirmative. These questions are answered in the following sections.

7.2.1 When is (7.6) Injective?

The following result provides various characterizations for the injectivity of

(7.6), which are very similar (but general) to those obtained for the injectivity of

(3.1) and coincide with the latter when B is an RKHS. The proof technique is

similar to that used to prove the results for RKHS embeddings.

Theorem 7.6. Suppose B is an s.i.p. RKBS defined on a topological space X with

K and G as its r.k. and s.i.p. kernel respectively. Then the following hold:

(a) Let X be a Polish space that is also locally compact Hausdorff. Suppose G is

bounded and K(x, ·) ∈ C0(X ) for all x ∈ X . Then (7.6) is injective if B is dense

in C0(X ).

(b) Suppose the conditions in (a) hold. Then (7.6) is injective if B is dense in

Lp(X , µ) for any Borel probability measure µ on X and some p ∈ [1,∞).

Proof. (a) We first show that if G is bounded and K(x, ·) ∈ C0(X ), ∀ x ∈ X , then
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B ⊂ C0(X ). Since G is bounded, we have

|f(x)| = |[f,G(x, ·)]B| ≤ ‖f‖B
√
G(x, x) ≤ ‖f‖B‖G‖∞

for all f ∈ B and x ∈ X , which means ‖f‖∞ ≤ ‖G‖∞‖f‖B, ∀ f ∈ B. Here

‖G‖∞ := sup{
√
G(x, x) : x ∈ X}. This means id : B → ℓ∞(X ) is well-defined

and ‖id : B → ℓ∞(X )‖ ≤ ‖G‖∞, where ℓ∞(X ) is the space of bounded functions

on X . Let us define Bpre := span{K(x, ·) : x ∈ X}. Since K(x, ·) ∈ C0(X ), ∀ x ∈
X , it is clear that Bpre ⊂ C0(X ). Theorem 2 in [95] shows that Bpre is dense

in B, which means for any f ∈ B, there exists a sequence {fn} ⊂ Bpre such

that limn→∞ ‖f − fn‖B = 0 and the continuity of id : B → ℓ∞(X ) then yields

limn→∞ ‖f − fn‖∞ = 0. The completeness of C0(X ) shows that C0(X ) is a closed

subspace of ℓ∞(X ), and since fn ∈ C0(X ), ∀n, we can conclude that f ∈ C0(X ).

Therefore, the inclusion id : B → C0(X ) is well-defined and continuous.

We now show that if B is dense in C0(X ), then (7.6) is injective. To

show this, we first obtain an equivalent representation for the denseness of B in

C0(X ) and then show that if (7.6) is not injective, then B is not dense in C0(X ),

thereby proving the result. By the Hahn-Banach theorem (Theorem 4.7), B is

dense in C0(X ) if and only if B⊥ = {µ ∈ Mb(X ) : ∀ f ∈ B,
∫
X
f dµ = 0} =

{0}. Let us assume that µ 7→
∫
X
K(·, x) dµ(x), µ ∈ Mb(X ) is not injective. This

means there exists µ ∈ Mb(X )\{0} such that
∫
X
K(·, x) dµ(x) = 0, which means

∫
X
f(x) dµ(x) = [

∫
X
K(·, x) dµ(x), f ∗]B′ = 0 for any f ∈ B, where we used (7.3).

In other words, B⊥ 6= {0}, which means B is not dense in C0(X ). Therefore, if

B is dense in C0(X ), then µ 7→
∫
X
K(·, x) dµ(x), µ ∈ Mb(X ) is injective, which

means (7.6) is injective.

(b) Suppose the conditions in (a) hold. We claim that B is dense in C0(X ) if and

only if B is dense in Lp(X , µ) for all Borel probability measures µ on X and some

p ∈ [1,∞). If this claim is true, then clearly the result in Theorem 7.6(b) follows.

The proof of the claim is as follows, which is essentially based on [13, Theorem 1].

(⇐ ) Suppose B is dense in C0(X ). This means, for any ǫ > 0 and for any

g ∈ C0(X ), there exists f ∈ B such that ‖f − g‖∞ ≤ ǫ
2
. Since X is an LCH

space, C0(X ) is dense in Lp(X , µ) for all Borel probability measures µ on X and
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all p ∈ [1,∞). This implies, for any ǫ > 0 and for any h ∈ Lp(X , µ), there

exists g ∈ C0(X ) such that ‖g − h‖Lp(X ,µ) ≤ ǫ
2
. Consider ‖f − h‖Lp(X ,µ) ≤ ‖f −

g‖Lp(X ,µ)+‖g−h‖Lp(X ,µ) ≤ ǫ
2
+ ǫ

2
= ǫ, which holds for any ǫ and any f ∈ Lp(X , µ).

Therefore, B is dense in Lp(X , µ) for all Borel probability measures µ on X and

all p ∈ [1,∞).

(⇒ ) Suppose B is not dense in C0(X ). Then, by the Hahn-Banach theorem

(Theorem 4.7), there exists a T ∈ (C0(X ))′, T 6= 0 such that T (f) = 0 for

all f ∈ B. Theorem 7 in [13] shows that for any T ∈ (C0(X ))′, there exists

a probability measure µ on X and a unique function h ∈ L∞(X , µ) such that

T (f) =
∫
X
f(x)h(x) dµ(x), f ∈ C0(X ) with ‖T‖ = ‖h‖L∞(X ,µ). Since T 6= 0,

we have h 6= 0. In addition, since µ is a probability measure, h ∈ Lq(X , µ),
which means there exists h 6= 0, h ∈ (Lp(X , µ))′ such that

∫
X
f(x)h(x) dµ(x) = 0.

Therefore, B is not dense in Lp(X , µ) for some Borel probability measure µ and

any p ∈ [1,∞).

Since it is not easy to check for the denseness of B in C0(X ) or Lp(X , µ),
in Theorem 7.7, we present an easily checkable characterization for the injectivity

of (7.6) when K is bounded continuous and translation invariant on Rd. Note

that Theorem 7.7 generalizes Theorem 3.13, which characterizes the injectivity of

RKHS embedding (in (3.1)).

Theorem 7.7. Let X = Rd. Suppose K(x, y) = ψ(x−y), where ψ is a real-valued

function of the form

ψ(x) =

∫

Rd

ei〈x,ω〉 dΛ(ω)

and Λ is a finite complex-valued Borel measure on Rd. Then (7.6) is injective if

supp(Λ) = Rd. In addition if K is symmetric, then the converse holds.

To prove Theorem 7.7, we need many supplementary results which are

proven below.

Lemma 7.8. Let µ be a finite Borel measure and f be a bounded function on Rd.

Suppose f is written as

f(x) =

∫

Rd

ei〈x,ω〉 dΛ(ω),
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with a finite Borel measure Λ on Rd. Then

f̂ ∗ µ = (2π)d/2 (µ̂Λ) ,

where the right hand side is a finite Borel measure22 and the equality holds as a

tempered distribution.

Proof. Since the Fourier and inverse Fourier transform give one-to-one correspon-

dence of S′
d, it suffices to show

(2π)−d/2(f ∗ µ) = (µ̂Λ)∨. (7.8)

For an arbitrary ϕ ∈ Sd,

(µ̂Λ)∨(ϕ) = (µ̂Λ)(ϕ∨) =

∫

Rd

ϕ∨(x)µ̂(x) dΛ(x). (7.9)

Substituting for µ̂ and ϕ∨ in Eq. (7.9) and applying Fubini’s theorem (Theo-

rem C.1), we have

(µ̂Λ)∨(ϕ) = (2π)−d/2
∫

Rd

∫

Rd

[∫

Rd

ei〈ω−y,x〉 dΛ(x)

]
ϕ(ω) dω dµ(y),

= (2π)−d/2
∫

Rd

[∫

Rd

f(ω − y) dµ(y)

]
ϕ(ω) dω

= (2π)−d/2(f ∗ µ)(ϕ)

and therefore proves (7.8).

Using Lemma 7.8, in the following, we obtain an alternate representation

for γK(P,Q)—see (7.5)—when K satisfies the assumptions in Theorem 7.7.

Lemma 7.9 (Fourier representation of γK). Suppose K satisfies the conditions in

Theorem 7.7. Then

γK(P,Q) = (2π)d/2
∥∥∥
(
(φP − φQ)Λ

)∨∥∥∥
B′
, (7.10)

where (φP − φQ)Λ represents a finite Borel measure defined by (7.7).

22 Let µ be a finite Borel measure and f be a bounded measurable function on Rd. We then
define a finite Borel measure fµ by

(fµ)(E) =

∫

Rd

1E(x)f(x) dµ(x), (7.7)

where E is an arbitrary Borel set and 1E is its indicator function.
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Proof. Consider

∫

Rd

K(·, x) dP(x) =
∫

Rd

ψ(· − x) dP(x) = ψ ∗ P.

By Lemma 7.8, we have ψ̂ ∗ P = (2π)d/2(P̂Λ), which means ψ ∗ P = (2π)d/2(P̂Λ)∨,

where P̂(ω) =
∫
Rd e

−i〈ω,x〉 dP(x), ω ∈ Rd (by C.5). Note that P̂ = φP. Therefore,

substituting for
∫
Rd K(·, x) dP(x) in γK(P,Q) yields (7.10).

Lemma 7.10. Let θ be a bounded continuous function on Rd. Suppose θΛ = 0,

where Λ is defined as in Theorem 7.7 and θΛ is a finite Borel measure defined by

(7.7). Then supp(θ) ⊂ cl(Rd\supp(Λ)).

Proof. Define Ω := supp(Λ). Let W := {x ∈ Rd | θ(x) 6= 0}. It suffices to show

that W ⊂ cl(Rd\Ω). Suppose W is not contained in cl(Rd\Ω). Then there is a

non-empty open subset U such that U ⊂W ∩ (Ω∪∂Ω), where ∂Ω := cl(Ω)\int(Ω).
Fix further a non-empty open subset V with cl(V ) ⊂ U . Since V ⊂ Ω, there is

ϕ ∈ Dd(V ) with Λ(ϕ) 6= 0. Take h ∈ Dd(U) such that h = 1 on cl(V ), and define

a continuous function ς = hϕ
θ

on Rd, which is well-defined from supp(h) ⊂ U and

θ 6= 0 on U . Since θΛ = 0, by Eq. (7.7), we have

∫

Rd

ς(x)θ(x) dΛ(x) = 0. (7.11)

The left hand side of Eq. (7.11) simplifies to

∫

Rd

ς(x)θ(x) dΛ(x) =

∫

U

h(x)ϕ(x)

θ(x)
θ(x) dΛ(x) =

∫

U

ϕ(x) dΛ(x) = Λ(ϕ) 6= 0,

resulting in a contradiction. So, supp(θ) ⊂ cl(Rd\Ω).

Proof of Theorem 7.7. (⇐ ) We show that if supp(Λ) = Rd, then γK(P,Q) is a

metric on M1
+(X ), i.e., (7.6) is injective. Let γK(P,Q) = 0, which by Lemma 7.9

implies
(
(φP − φQ)Λ

)∨
= 0, i.e., (φP − φQ)Λ = 0. Define θ := φP − φQ so that

θΛ = 0. By Lemma 7.10, this implies supp(θ) ⊂ Rd\supp(Λ). Therefore, if

supp(Λ) = Rd, then θ = 0 a.e., i.e., φP = φQ a.e. Recalling from Theorem C.7 that

φP and φQ are uniformly continuous on Rd, we have P = Q, i.e., γK is a metric on

M1
+(X ).
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(⇒ ) Note that since K is real and symmetric, we have that Λ is also real and

symmetric, i.e., Λ(dω) = Λ(−dω)—see Theorem C.7(i). Suppose supp(Λ) ( Rd.

Since the construction of θ in the proof of Theorem 3.13 exploits only the symmetric

property of K and does not require K to be pd, the same construction of θ holds

which satisfies θ, θ∨ ∈ L1(Rd) ∩ L2(Rd), θ(0) = 0 and supp(θ) = cl(Rd\supp(Λ)).
This means, by choosing Q (with q as its Radon-Nikodym derivative) as in the

proof of Theorem 3.13, one can construct a probability measure, P 6= Q (with

Radon-Nikodym derivative p) as p := q + θ∨. However,

γK(P,Q) = (2π)d/2
∥∥∥
(
(φP − φQ)Λ

)∨∥∥∥
B′

= (2π)d/2 ‖(θΛ)∨‖
B′ = 0.

Therefore (7.6) is not injective.

Remark 7.11. Theorem 7.7 generalizes the characterization for the injectivity of

(7.6) when B is an RKHS. If ψ is a real-valued pd function, then by Bochner’s

theorem (Theorem 2.1), Λ has to be real, nonnegative and symmetric, i.e., Λ(dω) =

Λ(−dω). Since ψ need not have to be a pd function for K to be a real, symmetric

r.k. of B, Λ need not be nonnegative. More generally, if ψ is a real-valued function

on Rd, then Λ is conjugate symmetric, i.e., Λ(dω) = Λ(−dω). Examples of ψ

that are not pd on R but satisfying the conditions of Theorem 7.7 are: (i) ψ(x) =

1[−σ,σ], σ > 0, (ii) ψ(x) = exp(−x2/2σ) sin(αx), σ > 0, α 6= 0, etc., for which

supp(Λ) = Rd. However, it is not clear whether these are reproducing kernels of

some RKBS. In Example 7.18, we provide a construction to generate r.k. that are

translation invariant, real and symmetric on Rd but may not be pd.

7.2.2 Consistency Analysis

As discussed in Section 5.1, for γK(P,Q) to be useful in inference applica-

tions like two-sample tests, it is required that γK(P,Q) can be estimated consis-

tently from finite samples drawn i.i.d. from P and Q and the estimator exhibits

a fast rate of convergence. In Section 5.2, we considered the empirical estima-

tion of γK(P,Q) when B is an RKHS (also see [37]) and showed that the empir-

ical estimator, γK(Pm,Qn) consistently estimates γK(P,Q) at a convergence rate

of O(m−1/2 + n−1/2), where m (resp. n) samples are drawn i.i.d. from P (resp.
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Q). The following result (Theorem 7.13) generalizes this consistency result by

showing that γK(Pm,Qn) consistently estimates γK(P,Q) with a convergence of

O(m(1−t)/t + n(1−t)/t) if B′ is of type t, 1 < t ≤ 2. Before we present the result, we

define the type of a Banach space, B [7, p. 303].

Definition 7.12 (Rademacher type of B). Let 1 ≤ t ≤ 2. A Banach space B is

said to be of t-Rademacher (or, more shortly, of type t) if there exists a constant

C∗ such that for any N ≥ 1 and any {fj}Nj=1 ⊂ B:


E

∥∥∥∥∥
N∑

j=1

̺jfj

∥∥∥∥∥

t

B




1/t

≤ C∗

(
N∑

j=1

‖fj‖tB

)1/t

, (7.12)

where {̺j}Nj=1 are i.i.d. Rademacher (symmetric ±1-valued) random variables.

Clearly, every Banach space is of type 1. Since having type t′ for t′ > t

implies having type t, let us define t∗(B) := sup{t : B has type t}.

Theorem 7.13. Let B be an s.i.p. RKBS. Assume ν := supx∈X
√
G(x, x) < ∞.

Fix δ ∈ (0, 1). Then with probability 1−δ over the choice of samples {X(1)
j }mj=1

i.i.d.∼
P and {X(2)

j }nj=1
i.i.d.∼ Q, we have

|γK(Pm,Qn)− γK(P,Q)| ≤ 2C∗ν
(
m

1−t
t + n

1−t
t

)
+

√
18ν2 log

4

δ

(
m− 1

2 + n− 1
2

)
,

where t = t∗(B′) and C∗ is some universal constant.

Proof. Since γK(P,Q) = γFK
(P,Q) (from Theorem 7.5), the result follows from

Theorem 5.11 if we show that

Rm(FK ; {X(1)
j }mj=1) ≤ C∗νm(1−t)/t

and

Rn(FK ; {X(2)
j }nj=1) ≤ C∗νn(1−t)/t,

where FK := {f : ‖f‖B ≤ 1}. In the following, we prove this claim. Consider

Rm(FK ; {X(1)
j }mj=1) = E

[
sup
f∈FK

∣∣∣∣∣
1

m

m∑

j=1

̺jf(X
(1)
j )

∣∣∣∣∣
∣∣∣ {X(1)

j }mj=1

]

(7.3)
= E


 sup
f∈FK

∣∣∣∣∣∣

[
1

m

m∑

j=1

̺jK(·, X(1)
j ), f ∗

]

B′

∣∣∣∣∣∣

∣∣∣ {X(1)
j }mj=1



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(a6)
= E



∥∥∥∥∥
1

m

m∑

j=1

̺jK(·, X(1)
j )

∥∥∥∥∥
B′

∣∣∣ {X(1)
j }mj=1




= E






∥∥∥∥∥
1

m

m∑

j=1

̺jK(·, X(1)
j )

∥∥∥∥∥

t

B′




1
t ∣∣∣ {X(1)

j }mj=1




(∗)
≤


E



∥∥∥∥∥
1

m

m∑

j=1

̺jK(·, X(1)
j )

∥∥∥∥∥

t

B′

∣∣∣ {X(1)
j }mj=1






1
t

(7.12)
≤ C∗

m

(
m∑

j=1

∥∥∥K(·, X(1)
j )
∥∥∥
t

B′

) 1
t

(a9)
=

C∗

m

(
m∑

j=1

∥∥∥(G(X(1)
j , ·))∗

∥∥∥
t

B′

) 1
t

(a7)
=

C∗

m

(
m∑

j=1

∥∥∥G(X(1)
j , ·)

∥∥∥
t

B

) 1
t

=
C∗

m

(
m∑

j=1

(G(X
(1)
j , X

(1)
j ))

t
2

) 1
t

≤ C∗νm
1−t
t ,

where we have invoked Jensen’s inequality [26, p. 109] in (∗). Repeating the similar

analysis for Rn(FK ; {X(2)
j }nj=1) proves the claim.

It is clear from Theorem 7.13 that if t∗(B′) ∈ (1, 2], then γK(Pm,Qn) is a

consistent estimator of γK(P,Q). In addition, the best rate is obtained if t∗(B′) =

2, which is the case if B is an RKHS. In Section 7.3, we will provide examples of

s.i.p. RKBSs that satisfy t∗(B′) = 2.

7.2.3 Computation of γK(P,Q)

In (3.5) and (5.13), we showed that γK(P,Q) has a nice expression in terms

of K(x, y), where B is an RKHS. We now consider the problem of computing

γK(P,Q) and γK(Pm,Qn) when B is an s.i.p. RKBS. Consider

γ2K(P,Q) =

∥∥∥∥
∫

X
K(·, x) dP(x)−

∫

X
K(·, x) dQ(x)

∥∥∥∥
2

B′
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(a5)
=

[∫

X
K(·, x) dP(x)−

∫

X
K(·, x) dQ(x),

∫

X
K(·, x) d(P−Q)(x)

]

B′

(a3)
=

[∫

X
K(·, x) dP(x),

∫

X
K(·, x) d(P−Q)(x)

]

B′

−
[∫

X
K(·, x) dQ(x),

∫

X
K(·, x) d(P−Q)(x)

]

B′

(7.3)
=

∫

X

[
K(·, x),

∫

X
K(·, x) d(P−Q)(x)

]

B′

dP(x)

−
∫

X

[
K(·, x),

∫

X
K(·, x) d(P−Q)(x)

]

B′

dQ(x)

=

∫

X

[
K(·, x),

∫

X
K(·, y) d(P−Q)(y)

]

B′

d(P−Q)(x). (7.13)

(7.13) is not reducible as the s.i.p. is not linear in the second argument unless

B is a Hilbert space. This means γK(P,Q) is not representable in terms of the

kernel function, K(x, y) unlike in the case of B being an RKHS, in which case the

s.i.p. in (7.13) reduces to an inner product providing γ2K(P,Q) =
∫∫

X K(x, y) d(P−
Q)(x) d(P−Q)(y). Since this issue holds for any P,Q ∈ M1

+(X ), it also holds for

Pm and Qn, which means γK(Pm,Qn) cannot be computed in a closed form in

terms of the kernel, K(x, y) unlike in the case of an RKHS where γK(Pm,Qn)

can be written as a simple V-statistic that depends only on K(x, y) computed at

{X(1)
j }mj=1 and {X(2)

j }nj=1. This is one of the main drawbacks of the RKBS approach

where the s.i.p. structure does not allow closed form representations in terms of the

kernel K (also see [95] where regularization algorithms derived in RKBS are not

easily solvable unlike in an RKHS), and therefore could limit its practical viability.

However, in the following section, we present examples of s.i.p. RKBSs for which

γK(P,Q) and γK(Pm,Qn) can be obtained in closed forms.

7.3 Concrete Examples of RKBS Embeddings

In this section, we present examples of RKBSs and then derive the corre-

sponding γK(P,Q). To do that, we recall the following result by Zhang et al. [95,

Theorem 10].
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Theorem 7.14 ( [95]). Let W be an s.i.p. space and Φ : X → W such that

cl(spanΦ(X )) = W, cl(spanΦ∗(X )) = W′,

where Φ∗ : X → W′ is defined as Φ∗(x) = (Φ(x))∗, x ∈ X . Then B := {[u,Φ(·)]
W

:

u ∈ W} equipped with

[[u,Φ(·)]
W
, [v,Φ(·)]

W
]
B
:= [u, v]

W

and B′ := {[Φ(·), u]
W

: u ∈ W} with

[[Φ(·), u]
W
, [Φ(·), v]

W
]
B′ := [v, u]

W

are s.i.p. RKBSs, where B′ is the dual of B with the bilinear form

([[u,Φ(·)]
W
, [Φ(·), v]

W
])
B
:= [u, v]W, u, v ∈ W.

Moreover, the s.i.p. kernel G of B is given by

G(x, y) = [Φ(x),Φ(y)]
W
, x, y ∈ X ,

which coincides with its reproducing kernel, K.

As a corollary to Theorem 7.14, we obtain the following result, which is

then used to obtain concrete examples of RKBS embedding.

Corollary 7.15. Let (X ,A , µ) be a measure space. Then for any 1 < p < ∞,

1 < q <∞, p−1 + q−1 = 1,

Bp(X ) :=

{
fu(x) =

∫

X
u(t)b(x, t) dµ(t) : u ∈ Lp(X , µ), x ∈ X

}

equipped with [fu, fv]Bp
:= [u, v]Lp(X ,µ), and

B′
p(X ) :=

{
f ∗
u(x) =

∫

X

b(x, t)|b(x, t)|q−2u(t)|u(t)|p−2

‖b(x, ·)‖q−2
Lq(X ,µ)‖u‖

p−2
Lp(X ,µ)

dµ(t) :
u ∈ Lp(X , µ)

x ∈ X

}

with [f ∗
u , f

∗
v ]B′

p
:= [v, u]Lp(X ,µ) are s.i.p. RKBSs with

K(x, y) = G(x, y) =

∫

X

b(x, t)|b(x, t)|q−2

‖b(x, ·)‖q−2
Lq(X ,µ)

b(y, t) dµ(t)
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as the reproducing kernel (also the s.i.p. kernel), where b(x, ·) ∈ Lq(X , µ), ∀ x ∈ X ,

cl(span{b(x, ·) : x ∈ X}) = Lq(X , µ) and cl

(
span

{
b(x,·)|b(x,·)|q−2

‖b(x,·)‖q−2
Lq(X ,µ)

: x ∈ X
})

=

Lp(X , µ). Moreover,

γK(P,Q) =

∥∥∥∥
∫

X
b(x, ·) dP(x)−

∫

X
b(x, ·) dQ(x)

∥∥∥∥
Lq(X ,µ)

.

Proof. Choosing W = Lp(X , µ), Φ(x) = b(x,·)|b(x,·)|q−2

‖b(x,·)‖q−2
Lq(X ,µ)

, Φ∗(x) = b(x, ·) in Theo-

rem 7.14 and using [u, v]Lp(X ,µ) as defined in (7.2) proves the result. Now, consider

γK(P,Q) =

∥∥∥∥
∫

X
K(·, x) d(P−Q)(x)

∥∥∥∥
B′

=

∥∥∥∥∥

∫

X

∫

X

b(·, t)|b(·, t)|q−2

‖b(·, ·)‖q−2
Lq(X ,µ)

b(x, t) dµ(t) d(P−Q)(x)

∥∥∥∥∥
B′

(∗)
=

∥∥∥∥∥∥∥∥∥

∫

X

b(·, t)|b(·, t)|q−2

‖b(·, ·)‖q−2
Lq(X ,µ)

A(t)︷ ︸︸ ︷∫

X
b(x, t) d(P−Q)(x) dµ(t)

∥∥∥∥∥∥∥∥∥
B′

=

∥∥∥∥∥
A|A|q−2

‖A‖q−2
Lq(X ,µ)

∥∥∥∥∥
Lp(X ,µ)

= ‖A‖Lq(X ,µ),

where we have invoked Fubini’s theorem (Theorem C.1) in (∗).

Corollary 7.15 shows that the embedding of P into B′ as
∫
X K(·, x) dP(x)

can be interpreted as embedding P into Lq(X , µ) as
∫
X b(x, ·) dP(x) since these

embeddings are isometric. Based on Corollary 7.15, we now present three examples

of RKBSs and the corresponding γK : Example 7.16 deals with RKBSs induced

by a pd kernel and generalizes the distance metric obtained for an RKHS while

Examples 7.17 and 7.18 involve RKBS induced by an r.k. that is not pd.

Example 7.16. Let µ be a finite nonnegative Borel measure on Rd and b(x, t) =

ei〈x,t〉, x, t ∈ Rd, which satisfies the conditions in Corollary 7.15. Therefore, we

have

Bp(R
d) :=

{
fu(x) =

∫

Rd

u(t)ei〈x,t〉 dµ(t) : u ∈ Lp(Rd, µ), x ∈ Rd

}
, (7.14)
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is an RKBS with

K(x, y) = G(x, y) = (µ(Rd))
p−2
p

∫

Rd

e−i〈x−y,t〉 dµ(t) (7.15)

as the r.k. and

γK(P,Q) =

∥∥∥∥
∫

Rd

ei〈x,·〉 d(P−Q)(x)

∥∥∥∥
Lq(Rd,µ)

= ‖φP − φQ‖Lq(Rd,µ) . (7.16)

First note that K is a translation invariant pd kernel on Rd as it is the Fourier

transform of a nonnegative finite Borel measure, µ, which follows from Bochner’s

theorem (Theorem 2.1). Therefore, though the s.i.p. kernel and the r.k. of an

RKBS need not have to be symmetric, the space in (7.14) is an interesting example

of an RKBS, which is induced by a pd kernel. In particular, it can be seen that

many RKBSs (Bp(Rd) for any 1 < p <∞) have the same r.k (ignoring the scaling

factor which can be made one for any p by choosing µ to be a probability measure).

Second, note that Bp is an RKHS when p = q = 2 and therefore (7.16) generalizes

γk (see (3.7)). By Theorem 7.7, it is clear that γK in (7.16) is a metric onM1
+(R

d)

if and only if supp(µ) = Rd.

Bp(Rd) can also be interpreted as follows. Define

ψ(x) = (µ(Rd))
p−2
p

∫

Rd

e−i〈x,t〉 dµ(t)

so that K(x, y) = ψ(x − y). Suppose ψ ∈ Cb(Rd) ∩ L1(Rd) is strictly pd so that

dµ(t) = (2π)−d/2ψ̂(t) dt, where ψ̂(x) ≥ 0, ∀ x ∈ Rd and ψ̂ ∈ L1(Rd), which follows

from Corollary 6.12 in [91]. Then (7.14) can be written as

Bp(R
d) :=

{
fu(x) = (2π)−d/2

∫

Rd

ei〈x,t〉u(t)ψ̂(t) dt : u ∈ Lp(Rd, ψ̂), x ∈ Rd

}
.

Since ψ̂ ∈ L1(Rd) and u ∈ Lp(Rd, ψ̂), it is easy to check that uψ̂ ∈ L1(Rd).

Therefore, any fu ∈ Bp(Rd) can be written as fu = (uψ̂)∨, which means f̂u = uψ̂,

i.e.,

f̂u

ψ̂
∈ Lp(Rd, ψ̂) ⇔ f̂u

ψ̂1/q
∈ Lp(Rd).

Therefore (7.14) is equivalent to

Bp(R
d) :=

{
f ∈ C(Rd) :

f̂

ψ̂1/q
∈ Lp(Rd)

}
.
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By defining ‖f‖Bp := (2π)−d/2p
∥∥∥ f̂

ψ̂1/q

∥∥∥
Lp(Rd)

and using ‖ · ‖Bp in

[f, h]Bp = ‖h‖Bp

(
lim

t∈R,t→0

‖h+ tf‖Bp − ‖h‖Bp

t
+ i lim

t∈R,t→0

‖ih+ tf‖Bp − ‖h‖Bp

t

)

(7.17)

yields

[f, g]Bp =
1

(2π)d/2

∫

Rd

f̂(ω)ĝ(ω)|ĝ(ω)|p−2(ψ̂(ω))1−p

‖g‖p−2
Bp

dω, (7.18)

where we have quoted (7.17) from Proposition 28 of [95]. Note that when p = q = 2,

Bp(Rd) reduces to an RKHS with (7.18) being an inner product (see (2.9)),

〈f, g〉B2 = (2π)−d/2
∫

Rd

f̂(ω)ĝ(ω)

ψ̂(ω)
dω.

Suppose

ψ(x) =
21−s

Γ(s)
‖x‖s−d/22 K̃d/2−s(‖x‖2),

where K̃ represents the modified Bessel function and s > d/2. Then ψ̂(ω) =

(1 + ‖ω‖22)−s, which means

Bp(R
d) =

{
f ∈ C(Rd) : (1 + ‖ · ‖22)

s
q f̂ ∈ Lp(Rd)

}
(7.19)

represents a Sobolev space of order s. Note that when p = q = 2, (7.19) reduces to

(2.10).

Example 7.17. Let b(x, t) = e〈x,t〉, x, t ∈ Rd and µ be a finite nonnegative Borel

measure such that its moment-generating function, i.e., M∗
µ(x) :=

∫
Rd e

〈x,t〉 dµ(t)

exists. Then by Corollary 7.15,

Bp(R
d) :=

{
fu(x) =

∫

Rd

u(t)e〈x,t〉 dµ(t) : u ∈ Lp(Rd, µ), x ∈ Rd

}

is an RKBS with

K(x, y) = G(x, y) =
(
M∗

µ(qx)
) p−2

p M∗
µ(x(q − 1) + y) (7.20)

as the r.k. Suppose P and Q are such that M∗
P and M∗

Q exist. Then

γK(P,Q) =

∥∥∥∥
∫

Rd

e〈x,·〉 d(P−Q)(x)

∥∥∥∥
Lq(Rd,µ)

=
∥∥M∗

P −M∗
Q

∥∥
Lq(Rd,µ)

,
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which is the weighted Lq distance between the moment-generating functions of P

and Q. It is easy to see that if supp(µ) = Rd, then γK(P,Q) = 0 ⇒ M∗
P =

M∗
Q a.e. ⇒ P = Q, which means γK is a metric on M1

+(R
d).

Note that K is not symmetric (for q 6= 2) and need not be pd. When

p = q = 2, K(x, y) =M∗
µ(x+ y) is pd and Bp(Rd) is an RKHS.

Example 7.18. Let b(x, t) = φ(x − t), x, t ∈ Rd be real-valued and µ be the

Lebesgue measure, where φ ∈ Sd and supp(φ̂) = Rd. Then by Corollary 7.15, for

any 1 < p <∞,

Bp(R
d) :=

{
fu = φ ∗ u : u ∈ Lp(Rd)

}

is an RKBS with

K(x, y) = G(x, y) = ‖φ(x− ·)‖2−q
Lq(Rd)

∫

Rd

φ(x− t)
∣∣φq−2(x− t)

∣∣φ(y − t) dt

= ‖φ(x− ·)‖2−q
Lq(Rd)

∫

Rd

φ(t) |φ|q−2 (t)φ(y − x+ t) dt (7.21)

(⋆)
= (2π)d/2 ‖φ(x− ·)‖2−q

Lq(Rd)

(
φ̂ |φ|q−2φ∨

)∨
(x− y), (7.22)

as the r.k. and

γK(P,Q) = ‖φ ∗ (P−Q)‖Lq(Rd) ,

where (⋆) follows from Lemma 7.8 and (φ ∗ P)(x) :=
∫
Rd φ(x − t) dP(t) is the

convolution of φ with P.

Suppose φ(x) = φ(−x), x ∈ Rd and φ(x) ≥ 0 ∀ x ∈ Rd. Then (7.21) reduces

to

K(x, y) = G(x, y) = ‖φ(x− ·)‖2−q
Lq(Rd)

(φq−1 ∗ φ)(x− y),

where (φ ∗ u)(x) :=
∫
Rd φ(x−t)u(t) dt. Note that if ‖φ(x− ·)‖Lq(Rd) is independent

of x, i.e., a constant, then K(x, y) in (7.22) is translation invariant on Rd. Since

φ(x) = φ(−x), x ∈ Rd, we have η(x) = η(−x), x ∈ Rd, where η := φq−1 ∗ φ and

η ∈ Sd as φ ∈ Sd. This implies η̂ = (2π)d/2φ̂q−1φ̂ ∈ Sd and η̂(x) = η̂(−x), x ∈ Rd.

However, η̂ need not be nonnegative everywhere on Rd—if that were the case, then

K is pd by Bochner’s theorem, as it is the Fourier transform of a nonnegative finite

Borel measure, Λ with dΛ(x) = η̂(x) dx—and therefore, K need not be pd though

it is symmetric. In the following, we consider two choices for φ and obtain K that

are pd and symmetric but not pd:
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(i) φ(x) = (4π)−d/2e−
‖x‖22

4 , x ∈ Rd — K is pd for any q ∈ N\{1},

(ii) φ(x) = x2e−
3x2

2 , x ∈ R — K is symmetric but not pd.

It is clear that when q = 2, K is a pd kernel as from (7.22), we have K(x, y) =

(2π)d/2
(
φ̂φ∨

)∨
(x− y) = (2π)d/2

(
|φ̂|2
)∨

(x− y) and therefore B2 is an RKHS.

(i) φ(x) = (4π)−d/2e−
‖x‖2

2

4 : With this choice of φ, we obtain

Bp(R
d) :=

{
fu(x) =

1

(4π)d/2

∫

Rd

e−
‖x−t‖22

4 u(t) dt : u ∈ Lp(Rd), x ∈ Rd

}

which means any fu ∈ Bp(Rd) is the Weierstrass transform of u. The r.k. of Bp

is given as

K(x, y) = G(x, y) = (4π)−
d
p q−

d
q e−

‖x−y‖22
4p , (7.23)

which is clearly pd for any q ∈ N\{1}.

(ii) φ(x) = x2e−
3x

2

2 : With this choice of φ and q = 3, we obtain

B 3
2
(R) :=

{
fu(x) =

∫

R

(x− t)2e−
3(x−t)2

2 u(t) dt : u ∈ L
3
2 (R), x ∈ R

}

as an RKBS with r.k.

K(x, y) = G(x, y) =
e−(x−y)2

243

(
4π2

25

) 1
6 (

4(x− y)6 + 9(x− y)4 − 18(x− y)2 + 15
)

(7.24)

which is not pd (though it is symmetric on R) as its Fourier transform given by

(
φ̂2 φ̂

)
(x) =

−e− (x−y)2

4

34992
√
2

(
x6 − 39x4 + 216x2 − 324

)
(7.25)

is not nonnegative at every x ∈ R.

Refer to Appendix B for the derivation of (7.23)–(7.25). Consider

γK(P,Q) =

∥∥∥∥
∫

Rd

φ(· − x) d(P−Q)(x)

∥∥∥∥
Lq(Rd)

(⋆)
=

∥∥∥∥
(
φ̂ (φP − φQ)

)∨∥∥∥∥
Lq(Rd)

,

where we have derived the equality in (⋆) by using the idea in Lemma 7.9. Since

supp(φ̂) = Rd, we have γK(P,Q) = 0 ⇒ (φ̂ (φP − φQ))
∨ = 0 ⇒ φ̂ (φP − φQ) = 0 ⇒

φP = φQ a.e., which implies P = Q and therefore γK is a metric on M1
+(R

d).
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Having presented concrete examples of RKBSs and the corresponding Ba-

nach space embedding of probability measures, we now consider the problem of

computing γK(Pm,Qn) for K derived in Examples 7.16-7.18. In Section 7.2.3, we

showed that γK(Pm,Qn) does not have a nice closed form expression unlike in the

case of B being an RKHS. However, in the following, we show that if K is the

kernel in Examples 7.16 or 7.17, then for certain choices of q, γK(Pm,Qn) has a

closed form expression.

For the kernel, K in (7.15), let us consider the estimation of γK(P,Q):

γK(Pm,Qn) = ‖φPm − φQm‖Lq(Rd,µ)

=

(∫

Rd

∣∣∣∣
∫

Rd

ei〈x,t〉 d(Pm −Qn)(x)

∣∣∣∣
q

dµ(t)

)1
q

=

(∫

Rd

∣∣∣∣∣
1

m

m∑

j=1

ei〈t,X
(1)
j 〉 − 1

n

n∑

j=1

ei〈t,X
(2)
j 〉

∣∣∣∣∣

q

dµ(t)

) 1
q

. (7.26)

For Bp(Rd) is defined in (7.14), since B′
p(R

d) is of type min(q, 2) for 1 ≤ q ≤ ∞
[7, p. 304], by Theorem 7.13, γK(Pm,Qn) estimates γK(P,Q) consistently at a

convergence rate of O(m
max(1−q,−1)

min(q,2) + n
max(1−q,−1)

min(q,2) ) for q ∈ (1,∞), with the best

rate of O(m−1/2+n−1/2) attainable when q ∈ [2,∞). Now, the problem reduces to

computing γK(Pm,Qn). Since computing (7.26) in closed form may not be possible

for all q, (7.26) can be approximated as

γaK(Pm,Qn) = (µ(Rd))1/q

(
1

N

N∑

s=1

∣∣∣∣∣
1

m

m∑

j=1

ei〈ts ,X
(1)
j 〉 − 1

n

n∑

j=1

ei〈ts,X
(2)
j 〉

∣∣∣∣∣

q) 1
q

, (7.27)

where {ts}Ns=1 are N random samples drawn i.i.d. from the probability measure,

η := µ/µ(Rd). However, when q = 2, (7.26) can be computed very efficiently in

closed form (in terms of K) as a V-statistic [37], given by

γ2K(Pm,Qn) =
m∑

j,l=1

K(X
(1)
j , X

(1)
l )

m2
+

n∑

j,l=1

K(X
(2)
j , X

(2)
l )

n2
− 2

m∑

j=1

n∑

l=1

K(X
(1)
j , X

(2)
l )

mn
,

rather than through (7.27). More generally, we show below that if q = 2s, s ∈ N,

then (7.26) can be written in terms of the kernel, K(x, y) as

γqK(Pm,Qn) =

∫

Rd

|φPm(t)− φQn(t)|q dµ(t)



149

=

∫

Rd

(φPm − φQn)(t)(φPm − φQn)(t)
s· · ·

(φPm − φQn)(t)(φPm − φQn)(t) dµ(t)

=

∫

Rd

∫

Rd

ei〈t,x1〉 d(Pm −Qn)(x1)

∫

Rd

e−i〈t,x2〉 d(Pm −Qn)(x2)
s· · ·

∫

Rd

ei〈t,xq−1〉 d(Pm −Qn)(xq−1)

∫

Rd

e−i〈t,xq〉 d(Pm −Qn)(xq) dµ(t)

(⋆)
=

∫

Rd

(∫

Rd

∫

Rd

ei〈t,x1−x2〉 d(Pm −Qn)(x1) d(Pm −Qn)(x2)

)
s· · ·

(∫

Rd

∫

Rd

ei〈t,xq−1−xq〉 d(Pm −Qn)(xq−1) d(Pm −Qn)(xq)

)
dµ(t)

(⋆)
=

∫

Rd

(∫

Rd

q· · ·
∫

Rd

ei〈t,
∑s

j=1 x2j−1−
∑s

j=1 x2j〉
q∏

j=1

d(Pm −Qn)(xj)

)
dµ(t)

(⋆)
=

∫

Rd

q· · ·
∫

Rd

(∫

Rd

ei〈t,
∑q

j=1(−1)j−1xj〉 dµ(t)

) q∏

j=1

d(Pm −Qn)(xj)

(⋆⋆)
=

(µ(Rd))
2
p

(µ(Rd))

∫

Rd

q· · ·
∫

Rd

K

(
s∑

j=1

x2j−1,

s∑

j=1

x2j

)
q∏

j=1

d(Pm −Qn)(xj), (7.28)

where we have invoked Fubini’s theorem in (⋆) and (7.15) in (⋆⋆). Note that

choosing s = 1 results in (5.13). (7.28) shows that γqK(Pm,Qn) which can be

computed in a closed form in terms of K at a complexity of O(2qmq), assuming

m = n, which means the least complexity is obtained for q = 2. Therefore,

for appropriate choices of q, the RKBS embedding in Example 7.16 is useful in

practice as γK(Pm,Qn) is consistent and has a closed form expression. However,

the drawback of the RKBS framework is that the computation of γK(Pm,Qn) is

more involved than its RKHS counterpart.

Based on the discussion so far on the computation of γK(Pm,Qn) for K in

(7.15), similar ideas can be used to address the problem of computing γK(Pm,Qn)

for the kernel, K in (7.20). Akin to (7.26), we get

γK(Pm,Qn) =
∥∥M∗

Pm
−M∗

Qm

∥∥
Lq(Rd,µ)

=

(∫

Rd

∣∣∣∣
∫

Rd

e〈x,t〉 d(Pm −Qn)(x)

∣∣∣∣
q

dµ(t)

)1
q

=

(∫

Rd

∣∣∣∣∣
1

m

m∑

j=1

e〈t,X
(1)
j 〉 − 1

n

n∑

j=1

e〈t,X
(2)
j 〉

∣∣∣∣∣

q

dµ(t)

) 1
q

,
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which cannot be computed in a closed form and therefore one can resort to an

approximation similar to the one in (7.27). Instead, if q = 2s, s ∈ N, it can be

shown that γK(Pm,Qn) can be written in a closed form similar to the one in (7.28)

but in terms of M∗
µ as

γK(Pm,Qn) =

(∫

Rd

q· · ·
∫

Rd

M∗
µ

(
q∑

j=1

xj

)
q∏

j=1

d(Pm −Qn)(xj)

) 1
q

,

which requires O(2qmq) computations, assuming m = n (the least complexity

is obtained at q = 2). Therefore, the kernel and the corresponding RKBS in

Example 7.17 share the similar advantages and disadvantages of their counterparts

in Example 7.16.

In the above, while we derived closed form expressions for γK(Pm,Qn),

where K is chosen from Examples 7.16 and 7.17 and q = 2s, s ∈ N, it is can

be shown that if K is chosen from Example 7.18, such a closed expression is not

possible for γK(Pm,Qn) unless q = 2.

7.4 Discussion

In this chapter, we have generalized the notion of RKHS embedding of

probability measures to Banach spaces, in particular by embedding probability

measures into RKBS that are uniformly Fréchet differentiable and uniformly con-

vex. Similar to the case of RKHS, these embeddings are shown to be determined

by the reproducing kernel (r.k.) of the RKBS and then characterized its injectivity.

We also showed that the Rademacher type of the RKBS determines the consistency

and rate of convergence of the empirical estimator of the distance between the em-

beddings of probability measures P and Q. Although one of the drawbacks of the

RKBS approach (compared to its RKHS counterpart) is the non-computability of

this estimator in a closed form, in general, we presented non-trivial examples of

RKBS for which the closed form computation is possible.

Many issues are still open in the theory of RKBS and its associated distri-

bution embeddings. First, unlike in the case of RKHS where the r.k. is positive

definite, there is no such nice characterization for the r.k. of an RKBS. Therefore, a
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systematic study is needed to characterize the properties of RKBS and its r.k. Sec-

ond, though we provided a few examples of RKBS, one of which being a variation

of the Sobolev space, it is interesting to consider generalizations of other Banach

spaces like Besov, Orlicz, Orlicz-Sobolev spaces, etc., and study the corresponding

embeddings.
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A Relation Between IPMs and

φ-Divergences

In this appendix, we discuss the relation between IPMs and φ-divergences

and show that IPMs are essentially different from φ-divergences.

Based on the definitions of IPM and φ-divergence, it is clear that {γF(P,Q) :

F} and {Dφ(P,Q) : φ} represent classes of IPMs and φ-divergences (on P and Q)

indexed by F and φ, respectively. Let us define Pλ(X ) as the set of all probability

measures, P that are absolutely continuous with respect to some σ-finite measure,

λ on X . For P,Q ∈ Pλ(X ), let p = dP
dλ

and q = dQ
dλ

be the Radon-Nikodym

derivatives of P and Q with respect to λ. For P,Q ∈ Pλ (so that P ≪ Q), it is

easy to check that the above two classes intersect at F = {f : ‖f‖∞ ≤ 1} and

φ(t) = |t−1|, i.e., γF(P,Q) = Dφ(P,Q) =
∫
X |p−q| dλ, which is the total-variation

distance. So, a natural question to consider is for what conditions on F and φ

is γF(P,Q) = Dφ(P,Q) for all P,Q ∈ Pλ(X )? This shows the degree of overlap

between the class of IPMs and the class of φ-divergences. We answer this in the

following theorem, where we show that the total-variation distance is the only

“non-trivial”23 IPM that is also a φ-divergence.

Theorem A.1 (Necessary and sufficient conditions). Suppose F⋆ be the set of all

real-valued measurable functions on X and Φ be the class of all convex functions

φ : [0,∞) → (−∞,∞] continuous at 0 and finite on (0,∞). Let F ⊂ F⋆ and

φ ∈ Φ. Then for any P,Q ∈ Pλ(X ), γF(P,Q) = Dφ(P,Q) if and only if any one

23Choosing F to be the set of all real-valued measurable functions on X and φ(t) = 0 if t = 1
and +∞ if t 6= 1 yields γF(P,Q) = Dφ(P,Q) = 0 if P = Q and +∞ if P 6= Q. It is easy so show
that the converse also holds. This choice of F and φ shows that IPM is trivially a φ-divergence.

152
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of the following hold:

(i) F = {f : ‖f‖∞ ≤ β−α
2

}, φ(u) = α(u− 1)1[0,1](u)+β(u− 1)1[1,∞)(u) for some

α < β <∞, i.e., γF(P,Q) = Dφ(P,Q) = β−α
2

∫
X |p− q| dλ.

(ii) F = {f : f = c, c ∈ R}, φ(u) = α(u − 1)1[0,∞)(u), α ∈ R, i.e., γF(P,Q) =

Dφ(P,Q) = 0.

Proof. Define Pf :=
∫
X f dP.

(⇐) Suppose (i) holds. Then for any P,Q ∈ Pλ(X ), we have

γF(P,Q) = sup

{
|Pf −Qf | : ‖f‖∞ ≤ β − α

2

}

=
β − α

2
sup{|Pf −Qf | : ‖f‖∞ ≤ 1}

=
β − α

2

∫

X
|p− q| dλ (a)

= Dφ(P,Q),

where (a) follows from simple algebra after substituting φ in Dφ(P,Q) (see [43]).

This means γF(P,Q) andDφ(P,Q) are equal to the total variation distance between

P and Q.

Suppose (ii) holds. Then γF(P,Q) = 0 and Dφ(P,Q) = α
∫
X q φ(p/q) dλ =

α
∫
X (p− q) dλ = 0.

(⇒) Suppose γF(P,Q) = Dφ(P,Q) for any P,Q ∈ Pλ(X ). Since γF is a pseudo-

metric on Pλ(X ) (irrespective of F), Dφ is a pseudometric on Pλ(X ). Through

the simple modification of Theorem 2 in [43], it can be shown that if Dφ is a pseu-

dometric then φ(u) = α(u− 1)1[0,1](u) + β(u− 1)1[1,∞)(u) for some β ≥ α, which

means for P,Q ∈ Pλ(X ), Dφ(P,Q) = β−α
2

∫
X |p− q| dλ if β > α and Dφ(P,Q) = 0

if β = α. Now, let us consider two cases.

Case 1: β > α

Since γF(P,Q) = Dφ(P,Q) for all P,Q ∈ Pλ(X ), we have γF(P,Q) = β−α
2

∫
X |p−

q| dλ = β−α
2

sup{|Pf − Qf | : ‖f‖∞ ≤ 1} = sup{|Pf − Qf | : ‖f‖∞ ≤ β−α
2
} and

therefore F = {f : ‖f‖∞ ≤ β−α
2
}.

Case 2: β = α

γF(P,Q) = supf∈F |Pf − Qf | = 0 for all P,Q ∈ Pλ(X ), which means ∀P,Q ∈
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Pλ(X ), ∀ f ∈ F, Pf = Qf . This, in turn, means f is a constant on X , i.e.,

F = {f : f = c, c ∈ R}.

Note that in Theorem A.1, the cases (i) and (ii) are disjoint as α < β in

case (i) and α = β in case (ii). Case (i) shows that the family of φ-divergences

and the family of IPMs intersect only at the total variation distance. Case (ii) is

trivial as the distance between any two probability measures is zero. This result

shows that IPMs and φ-divergences are essentially different.



B Derivation of (7.23)–(7.25)

For φ defined in Example 7.18, K is obtained as

K(x, y) = (2π)d/2 ‖φ(x− ·)‖2−q
Lq(Rd)

(
φ̂ |φ|q−2φ∨

)∨
(x− y), (B.1)

which is the (inverse) Fourier transform of φ̂ |φ|q−2φ∨. If φ(x) = φ(−x), ∀ x ∈ Rd

and φ(x) ≥ 0, ∀ x ∈ Rd, then (B.1) reduces to

K(x, y) = (2π)d/2 ‖φ(x− ·)‖2−q
Lq(Rd)

(
φ̂q−1φ̂

)∨
(x− y). (B.2)

To derive (7.23)–(7.25), we use the following identities, where α > 0.
∫

Rd

e−α‖x‖
2
2 =

(π
α

) d
2

∫

R

(x− b)2re−α(x−b)
2

=

√
π

α

1

(2α)r
(2r)!

r! 2r
, r ∈ N

ê−α‖x‖
2
2 =

1

(2α)d/2
e−

‖x‖22
4α

d2

dx2
e−αx

2

= α
(
4αx2 − 2

)
e−αx

2

d4

dx4
e−αx

2

= α2
(
16α2x4 − 48αx2 + 12

)
e−αx

2

d6

dx6
e−αx

2

= α3
(
64α3x6 − 480α2x4 + 720αx2 − 120

)
e−αx

2

x̂nf(x) = in
dn

dxn
f̂(x)

B.1 Derivation of (7.23)

Since φ(x) = (4π)−d/2e−‖x‖22/4, we have

‖φ(x− ·)‖2−q
Lq(Rd)

=

(∫

Rd

1

(4π)dq/2
e−

q‖x−t‖22
4 dt

) 2−q
q

=

(
(4π)d(1−q)/2

qd/2

) 2−q
q

, (B.3)
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(
φ̂q−1φ̂

)
(x) = (4π)−dq/2

̂
e−

(q−1)‖x‖22
4

̂
e−

‖x‖22
4 =

1

(4π)dq/2

(
4

(q − 1)

)d/2
e−

q
q−1

‖x‖22 ,

and

(
φ̂q−1φ̂

)∨
(x) =

1

(4π)dq/2

(
4

(q − 1)

)d/2
̂

e−
q

q−1
‖x‖22 =

1

(4π)dq/2

(
2

q

)d/2
e−

q−1
4q

‖x‖22 .

(B.4)

Therefore, using (B.3) and (B.4) in (B.2) yields,

K(x, y) = (4π)
d(1−q)

q q−
d
q e−

q−1
4q

‖x−y‖22 = (4π)−
d
p q−

d
q e−

‖x−y‖22
4p ,

where we used p−1 + q−1 = 1.

B.2 Derivation of (7.24) and (7.25)

For φ(x) = x2e−
3x2

2 , we have

‖φ(x− ·)‖2−qLq(Rd) =

(∫

R
(x− t)2qe−

3q(x−t)2

2 dt

) 2−q
q

=

(√
2π

3q

(2q)!

q!(6q)q

) 2−q
q

, (B.5)

φ̂q−1(x) =
̂

x2(q−1)e−
3(q−1)x2

2 = (−1)q−1 d
2q−2

dx2q−2

̂
e−

3(q−1)x2

2

=
(−1)q−1

√
3(q − 1)

d2q−2

dx2q−2
e
− x2

6(q−1) , (B.6)

and

φ̂(x) = −3−1/2 d
2

dx2
e−

x2

6 =
3− x2

9
√
3
e−

x2

6 .

Since (B.6) is not computable in a closed form and q has to be an integer greater

than 2 (as q = 2 yields a pd kernel, K), let us choose q = 3 for the ease of

computation. Then, (B.5) and (B.6) reduce to

‖φ(x− ·)‖−1
L3(Rd) = 9 (50π)−

1
6 (B.7)

φ̂2(x) =
1√
6

d4

dx4
e−

x2

12 =
x4 − 36x2 + 108

1296
√
2

e−
x2

12
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and therefore

(
φ̂2φ̂
)
(x) =

(3− x2)(x4 − 36x2 + 108)

2
9
237

e−
x2

4

=
−(x6 − 39x4 + 216x2 − 324)

2
9
237

e−
x2

4 , (B.8)

(
φ̂2φ̂
)∨

(x) =
−1

2
9
237

̂
(x6 − 39x4 + 216x2 − 324)e−

x2

4

=
1

2
9
237

(
d6

dx6
+ 39

d4

dx4
+ 216

d2

dx2
+ 324

)
ê−

x2

4

=
1

2437

(
d6

dx6
+ 39

d4

dx4
+ 216

d2

dx2
+ 324

)
e−x

2

=
e−x

2

2437

(
(64x6 − 480x4 + 720x2 − 120) + 39(16x4 − 48x2 + 12)

+216(4x2 − 2) + 324
)

=
(4x6 + 9x4 − 18x2 + 15)

37
e−x

2

. (B.9)

Using (B.7) and (B.9) in (B.2) yields

K(x, y) =
e−(x−y)2

243

(
4π2

25

) 1
6 (

4(x− y)6 + 9(x− y)4 − 18(x− y)2 + 15
)
. (B.10)

Note that K in (B.10) is real and symmetric but is not pd as its Fourier trans-

form, φ̂2φ̂ in (B.8) is not nonnegative everywhere on R—for example
(
φ̂2φ̂
)
(6) =

−0.4398.



C Appendix

In this appendix, we summarize several results and notions that are used

in the dissertation.

C.1 Definitions

In the following, we define various notions that are used in the dissertation.

C.1.1 Standard Spaces

C(X ), Cb(X ), C0(X ), ‖ · ‖∞ : Let X be a topological space. C(X ) de-

notes the space of all continuous functions on X . Cb(X ) is the space of all bounded,

continuous functions on X . For a locally compact Hausdorff space (examples in-

clude Rd, infinite discrete sets, topological manifolds, etc.), X , f ∈ C(X ) is said

to vanish at infinity if for every ǫ > 0 the set {x : |f(x)| ≥ ǫ} is compact.24 The

class of all continuous f on X which vanish at infinity is denoted as C0(X ). The

spaces Cb(X ) and C0(X ) are endowed with the supremum norm, ‖ · ‖∞ defined as

‖f‖∞ := supx∈X |f(x)| for f ∈ C0(X ) ⊂ Cb(X ). The space of all r-continuously

differentiable functions on X is denoted by Cr(X ), 0 ≤ r ≤ ∞.

Lp(X , µ), Lp(X ), ‖ · ‖Lp(X ,µ) : For a measure space, (X ,A , µ), Lp(X , µ)
denotes the Banach space of p-power (p ≥ 1) µ-integrable functions endowed with

the Lp-norm

‖f‖Lp(X ,µ) :=

(∫

X
|f |p dµ

) 1
p

.

24LCH spaces have a rich supply of continuous functions that vanish outside compact sets—see
Tietze extension theorem [26, Theorem 4.34].
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We use Lp(Z) for Lp(Z, µ) and dx for dµ(x) if µ is the Lebesgue measure on

Z ⊂ Rd.

Dd, Sd : Let Dd be the space of compactly supported infinitely differentiable

functions on Rd, i.e.,

Dd = {f ∈ C∞(Rd) | supp(f) is bounded},

where supp(f) = cl
(
{x ∈ Rd | f(x) 6= 0}

)
. A function f : Rd → C is said to decay

rapidly, or be rapidly decreasing, if for all N ∈ N,

sup
‖α‖1≤N

sup
x∈Rd

(1 + ‖x‖22)N |(Tαf)(x)| <∞,

where α = (α1, . . . , αd) is an ordered d-tuple of nonnegative αj , ‖α‖1 =
∑d

j=1 αj

and Tα =
(

1
i
∂
∂x1

)α1

· · ·
(

1
i
∂
∂xd

)αd

. Sd, called the Schwartz class, denotes the vector

space of rapidly decreasing functions. Note that Dd ⊂ Sd. Also, for any p ∈ [1,∞],

Sd ⊂ Lp(Rd).

Mb(X ), M b
+(X ), M1

+(X ) : A signed Borel measure µ on a topological

space X is said to be finite if ‖µ‖ := |µ|(X ) < ∞, where |µ| is the total-variation

of µ. M b
+(X ) denotes the space of all finite Borel measures on X while Mb(X )

denotes the space of all finite signed Borel measures on X . The space of all Borel

probability measures is denoted as M1
+(X ) := {µ ∈ M b

+(X ) : µ(X ) = 1}. For

µ ∈Mb(X ), the support of µ is defined as

supp(µ) = {x ∈ X | for any open set U such that x ∈ U, |µ|(U) 6= 0}. (C.1)

Mbc(X ) denotes the space of all compactly supported finite signed Borel measures

on X . A signed Radon measure µ on a Hausdorff space X is a Borel measure on

X satisfying

(i) µ(C) <∞ for each compact subset C ⊂ X ,

(ii) µ(B) = sup{µ(C) |C ⊂ B, C compact} for each B in the Borel σ-algebra of

X .

If X is a Polish space, then by Ulam’s theorem, every finite Borel measure is

Radon [23, Theorem 7.1.4].
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Lip(X , ρ), BL(X , ρ), ‖·‖L, ‖·‖BL : A real-valued function, f on a metric

space, (X , ρ) is said to be L-Lipschitz if |f(x)−f(y)| ≤ Lρ(x, y), ∀ x, y ∈ X , where

L > 0. The Lipschitz semi-norm of f , denoted as ‖f‖L is defined as

‖f‖L := inf{L : |f(x)− f(y)| ≤ Lρ(x, y), ∀ x, y ∈ X}

= sup

{ |f(x)− f(y)|
ρ(x, y)

: x 6= y in X
}
.

The space of all Lipschitz functions on X is defined as

Lip(X , ρ) := {f : X → R | ‖f‖L <∞}.

The space of all bounded Lipschitz functions is defined as

BL(X , ρ) := {f : X → R | ‖f‖BL <∞},

where ‖f‖BL := ‖f‖L + ‖f‖∞ is the dual-bounded Lipschitz norm.

C.1.2 Distributions and Fourier Transforms

For f ∈ L1(Rd), f̂ and f∨ represent the Fourier transform and inverse

Fourier transform of f respectively, defined as

f̂(y) :=
1

(2π)d/2

∫

Rd

e−i〈y,x〉f(x) dx, y ∈ Rd, (C.2)

f∨(x) :=
1

(2π)d/2

∫

Rd

ei〈x,y〉f(y) dy, x ∈ Rd. (C.3)

Since Sd ∈ Lp(Rd) for any p ∈ [1,∞], the above definitions of f̂ and f∨ hold for any

f ∈ Sd. It can be shown that for any f ∈ Sd, f̂ ∈ Sd and f
∨ ∈ Sd (see [26, Chapter

9] and [65, Chapter 6] for details). For f /∈ L1(Rd) but f ∈ L2(Rd), the Fourier

transform f̂ is defined to be the limit, in the L2-norm, of the sequence {f̂n} of

Fourier transforms of any sequence {fn} of functions belonging to Sd, such that

fn converges in the L2-norm to the given function f ∈ L2(Rd), as n → ∞. The

function f̂ is defined almost everywhere on Rd and belongs to L2(Rd). See [32,

Chapter IV, Lesson 22] for details.

Distributions, D′
d: A linear functional on Dd which is continuous with

respect to the Fréchet topology [65, Definition 6.3] is called a distribution in Rd.

The space of all distributions in Rd is denoted by D′
d.
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As examples, if f is locally integrable on Rd (this means that f is Lebesgue

measurable and
∫
K
|f(x)| dx <∞ for every compact K ⊂ Rd), then the functional

Df defined by

Df(ϕ) =

∫

Rd

f(x)ϕ(x) dx, ϕ ∈ Dd, (C.4)

is a distribution. Similarly, if µ is a Borel measure on Rd, then

Dµ(ϕ) =

∫

Rd

ϕ(x) dµ(x), ϕ ∈ Dd,

defines a distribution Dµ in Rd, which is identified with µ.

Support of a distribution: For an open set U ⊂ Rd, Dd(U) denotes the

subspace of Dd consisting of the functions with support contained in U . Suppose

D ∈ D′
d. If U is an open set of Rd and if D(ϕ) = 0 for every ϕ ∈ Dd(U), then D

is said to vanish or be null in U . Let W be the union of all open U ⊂ Rd in which

D vanishes. The complement of W is the support of D.

Tempered distributions, S′
d and Fourier transform on S′

d: A linear continu-

ous functional (with respect to the Fréchet topology) over the space Sd is called a

tempered distribution and the space of all tempered distributions in Rd is denoted

by S′
d. For example, every compactly supported distribution is tempered.

For any f ∈ S′
d, the Fourier and inverse Fourier transforms are defined as

f̂(ϕ) := f(ϕ̂), ϕ ∈ Sd,

f∨(ϕ) := f(ϕ∨), ϕ ∈ Sd,

respectively. The Fourier transform is a linear, one-to-one, bicontinuous mapping

from S′
d to S′

d.

For complete details on distribution theory and Fourier transforms of dis-

tributions, we refer the reader to [26, Chapter 9] and [65, Chapter 6].

C.2 Supplementary Results

For completeness, we present supplementary results that are used to prove

the main results in this dissertation.
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C.2.1 Real Analysis

Theorem C.1 (Fubini [26, Theorem 2.37]). If f ∈ L1(X , µ⊗ ν), then
∫∫

X
f(x, y) dµ(x) dν(y) =

∫∫

X
f(x, y) dν(y) dµ(x).

Theorem C.2 (Riesz Representation Theorem for Hilbert Space [26, Theorem

5.25]). Suppose H is an Hilbert space. If T ∈ H′, there is a unique g ∈ H such

that T (f) = 〈f, g〉H for all f ∈ H.

Theorem C.3 (Riesz Representation Theorem for C0(X ) [26, Theorem 7.17]).

Let X be an LCH space, and for µ ∈ Mb(X ) and f ∈ C0(X ) let Tµ(f) =
∫
X f dµ,

where Mb(X ) is the set of all finite signed Radon measures on X . Then the map

µ 7→ Tµ is an isometric isomorphism from Mb(X ) to (C0(X ))′.

Lemma C.4 (Lipschitz extension [52,92]). Let (X , ρ) be a metric and f : A→ R,

A ⊂ X , be an L-Lispchitz function. Then there exists an L-Lipschitz function

F : X → R such that F |A = f . In particular, F can be explicitly constructed as

F (x) = αmin
a∈A

(f(xi) + Lρ(x, a)) + (1− α)max
a∈A

(f(xi)− Lρ(x, a)),

for any α ∈ [0, 1].

Lemma C.5 (Bounded Lipschitz extension [23, Proposition 11.2.3]). If A ⊂ X
and f ∈ BL(A, ρ), then f can be extended to a function h ∈ BL(X , ρ) with h = f

on A and ‖h‖BL = ‖f‖BL. Additionally, it is possible to explicitly construct h as

h = max (−‖f‖∞,min (g, ‖f‖∞)) ,

where g is a function on X such that g = f on A and ‖g‖L = ‖f‖L.

The following result characterizes strictly pd kernels on T, which we quote

from [53]. Before we state the result, we introduce some notation. For natural

numbers m and n and a set A of integers, m+nA := {j ∈ Z | j = m+na, a ∈ A}.
An increasing sequence {cl} of nonnegative integers is said to be prime if it is not

contained in any set of the form p1N∪p2N∪· · ·∪pnN, where p1, p2, . . . , pn are prime

numbers. Any infinite increasing sequence of prime numbers is a trivial example

of a prime sequence. We write N0
n := {0, 1, . . . , n}.
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Theorem C.6 ( [53]). Let ψ be a pd function on T of the form in (2.4). Let

N := {|n| : Aψ(n) > 0, n ∈ Z} ⊂ N ∪ {0}. Then ψ is strictly pd if N has a subset

of the form ∪∞
l=0(bl+ clN0

l ), in which {bl}∪{cl} ⊂ N and {cl} is a prime sequence.

C.2.2 Fourier Analysis

Theorem C.7 (Fourier transform of a measure). Let µ be a finite Borel measure

on Rd. The Fourier transform of µ is given by

µ̂(ω) =

∫

Rd

e−i〈ω,x〉 dµ(x), ω ∈ Rd, (C.5)

which is a bounded, uniformly continuous function on Rd. In addition, µ̂ satisfies

the following properties:

(i) µ̂(ω) = µ̂(−ω), ∀ω ∈ Rd, that is, µ̂ is conjugate symmetric,

(ii) µ̂(0) = 1.

(iii) (Bochner’s Theorem) µ̂ is pd if and only if µ ∈M+
b (R

d).

Lemma C.8 (Riemann-Lebesgue [65, Theorem 7.5]). If f ∈ L1(Rd), then f̂ ∈
C0(Rd), and ‖f̂‖∞ ≤ ‖f‖1.

Theorem C.9 (Paley-Wiener [65, Theorem 7.23]). If f ∈ D′
d has compact support,

then f̂ is the restriction to Rd of an entire function on Cd.

C.2.3 Convex Analysis

Theorem C.10 ( [64, Theorem 32.1]). Let f be a convex function, and let C be a

convex set contained in the domain of f . If f attains its supremum relative to C

at some point of relative interior of C, then f is actually constant throughout C.

C.2.4 Concentration Inequalities and Empirical Processes

Theorem C.11 (Almost sure convergence of an empirical process [85, Theo-

rem 3.7]). Let F (x) = supf∈F |f(x)| be the envelope function for F. Assume that
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∫
F dP <∞, and that for any ε > 0,

1

m
H(F, L1(Pm), ε)

P−→ 0.

Then supf∈F
∫
f d(Pm − P)

a.s.−→ 0.

Theorem C.12 (McDiarmid’s Inequality [51]). Let X1, . . . , Xn, Y1, . . . , Yn be in-

dependent random variables taking values in a set X , and assume that f : X n → R

satisfies

|f(x1, . . . , xn)− f(x1, . . . , xj−1, yj, xj+1, . . . , xn)| ≤ cj, (C.6)

∀ x1, . . . , xn, y1, . . . , yn ∈ X . Then for every ǫ > 0,

Pr (f(X1, . . . , Xn)− Ef(X1, . . . , Xn) ≥ ǫ) ≤ e
−2ǫ2

∑n
j=1

c2
j . (C.7)

Lemma C.13 (Symmetrization [86]). Let ̺1, . . . , ̺N be i.i.d. Rademacher random

variables. Suppose {Xj}Nj=1
i.i.d.∼ P. Then,

E sup
f∈F

|Pf − PNf | ≤ 2E sup
f∈F

∣∣∣∣∣
1

N

N∑

j=1

̺jf(Xj)

∣∣∣∣∣ . (C.8)
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Notation and Symbols

Sets

∅ empty set
N set of positive integers
Nn {1, 2, . . . , n}
Z set of positive or negative integers including 0
R, R+, R++ set of real, nonnegative real and positive real numbers
T [0, 2π)
C set of complex numbers
int(A), cl(A) interior and closure of a set A
A ∪ B, A ∩B union and intersection of A and B
|A| number of elements of a set A
A× B cartesian product of A and B

Functions

1A(x) indicator function, 1A(x) = 1, if x ∈ A, 0 otherwise
⌈·⌉ ⌈x⌉ = min{y ∈ Z : y ≥ x}, x ∈ R
id identity map x 7→ x
φP, φQ characteristic functions of probability measures P, Q
M∗

µ moment generating function of measure µ
f ∗ g convolution of f and g:

∫
Rd f(· − x)g(x) dx

f ∗ P convolution of f and P:
∫
Rd f(· − x) dP(x)

f̂ , f∨ Fourier and inverse Fourier transforms of f
a ∨ b max(a, b)
sign(x) 1x>0(x)− 1x<0(x)

Spaces

X space of input values
B RKBS or a generic Banach space
Bp(X ) Reproducing kernel Banach space
B′, B′

p(X ) topological duals of B and Bp(X )
F, G arbitrary class of functions
F⋆ set of all measurable functions on X
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FW , Fβ, Fk unit balls w.r.t. ‖ · ‖L, ‖ · ‖BL and ‖ · ‖H
H RKHS or generic Hilbert space
Hk Reproducing kernel Hilbert space
C(X ) space of continuous functions f : X → R
Cb(X ) space of bounded continuous functions f : X → R
Cr(X ) space of r-differentiable functions, 0 ≤ r ≤ ∞
C0(X ) space of functions f : X → R vanishing at infinity
Lp(X , µ) space of p-power (p ≥ 1) µ-integrable functions
Lp(X ) space of p-power Lebesgue integrable functions on

X ⊂ Rd

ℓp(X ), ℓp space of p-summable functions or sequences
Dd space of compactly supported f ∈ C∞(Rd)
Sd space of rapidly decaying functions on Rd

D′
d, S

′
d Distributions and tempered distributions on Rd

Lip(X , ρ) space of Lipschitz functions on a metric space (X , ρ)
BL(X , ρ) space of bounded Lipschitz functions on (X , ρ)

Norms and other symbols

‖ · ‖, ‖ · ‖2 Euclidean norm

‖ · ‖p p-norm, ‖x‖p := (
∑d

j=1 |xj |p)1/p for x ∈ Cd

‖ · ‖Lp(X ,µ) Lp-norm
‖ · ‖∞ supremum norm
‖ · ‖B, ‖ · ‖B′ norms of RKBSs, B and B′

‖ · ‖H, ‖ · ‖Hk
norm of RKHS H

‖ · ‖L Lipschitz semi-norm
‖ · ‖BL dual-bounded Lipschitz norm
(·, ·)B bilinear form on B×B′

〈·, ·〉, 〈·, ·〉H inner product (in Hilbert space H)
[·, ·]B semi-inner-product (in s.i.p. space B)

Measures and Random variables

(X ,A ) measurable space with σ-algebra A

µ unspecified measure, sometimes signed measure
µ⊗ ν product measure of µ and ν
µ≪ ν µ is absolutely continuous w.r.t. ν
µ ⊥ ν µ and ν are singular
µ̂ Fourier transform of µ
|µ| total variation of µ
suppµ support of µ (also defined for functions)
λ Lebesgue measure on R (also on Rd)
δx Dirac measure at x ∈ X
P, Q probability measures
Pm, Qn empirical estimators of P and Q
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E(·) expectation operator
Pf

∫
X f dP

̺ Rademacher random variable

X , Y , X
(1)
j , X

(2)
j random variables

Rm(F; {xj}mj=1) Rademacher complexity of F
Um(F; {xj}mj=1) Rademacher chaos complexity of F
a.s.→,

P→,
w→ convergence in (a.s., P, weak) sense

OP(·) Xn = OP(rn): Xn/rn is bounded in probability
M b

+(X ) set of all finite Borel measures on X
Mb(X ) set of all finite signed Borel measures on X
Mbc(X ) set of all compactly supported µ ∈Mb(X )
M1

+(X ) set of all Borel probability measures on X

Metrics/Divergences on M1
+(X )

γF integral probability metric
γk, γK , γ MMD and generalized MMD
W , W1 Kantorovich and Wasserstein distances
β Dudley metric
TV Total variation distance
Dφ φ-divergence

Kernels

k, K reproducing kernels of RKHS and RKBS
K family of positive definite kernels
δx Dirac functional
ψ k(x, y) = ψ(x− y), x, y ∈ Rd

Λ Fourier transform of ψ
Aψ Fourier series coefficients of ψ when X = Td

Miscellaneous

a := b, b =: a a is defined by b
d dimension of the vector
δ confidence parameter
δ(·) Dirac distribution on Rd

δjl Kronecker delta
i

√
−1

m,n sample size
∗n1 n-fold convolution
N (X , ρ, ε) covering number of X
H(X , ρ, ε) entropy number of X
spanA linear span of A
x complex conjuage of x

|x| absolute value of x ∈ C:
√
xx



Abbreviations

Abbreviation Explanation
a.e. almost everywhere
a.s. almost sure
MMD maximum mean discrepancy
i.i.d. independent and identically distributed
IPM integral probability metric
KL Kullback-Leibler
LCH locally compact Hausdorff
r.h.s. right hand side
r.k. reproducing kernel
RKBS reproducing kernel Banach space
RKHS reproducing kernel Hilbert space
pd positive definite
s.i.p. semi-inner-product
VC Vapnik-Červonenkis
w.r.t. with respect to
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