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Abstract

Kernel methods represent one of the most powerful tools in machine learning to tackle
problems expressed in terms of function values and derivatives due to their capability to
represent and model complex relations. While these methods show good versatility, they
are computationally intensive and have poor scalability to large data as they require opera-
tions on Gram matrices. In order to mitigate this serious computational limitation, recently
randomized constructions have been proposed in the literature, which allow the applica-
tion of fast linear algorithms. Random Fourier features (RFF) are among the most popular
and widely applied constructions: they provide an easily computable, low-dimensional
feature representation for shift-invariant kernels. Despite the popularity of RFFs, very lit-
tle is understood theoretically about their approximation quality. In this paper, we provide
a detailed finite-sample theoretical analysis about the approximation quality of RFFs by (i)
establishing optimal (in terms of the RFF dimension, and growing set size) performance
guarantees in uniform norm, and (ii) presenting guarantees in Lr (1 ≤ r < ∞) norms.
We also propose an RFF approximation to derivatives of a kernel with a theoretical study
on its approximation quality.

1 Introduction

Kernel methods [17] have enjoyed tremendous success in solving several fundamental problems of
machine learning ranging from classification, regression, feature extraction, dependency estimation,
causal discovery, Bayesian inference and hypothesis testing. Such a success owes to their capability
to represent and model complex relations by mapping points into high (possibly infinite) dimensional
feature spaces. At the heart of all these techniques is the kernel trick, which allows to implicitly
compute inner products between these high dimensional feature maps, λ via a kernel function k:
k(x,y) = 〈λ(x), λ(y)〉. However, this flexibility and richness of kernels has a price: by resorting
to implicit computations these methods operate on the Gram matrix of the data, which raises serious
computational challenges while dealing with large-scale data. In order to resolve this bottleneck,
numerous solutions have been proposed, such as low-rank matrix approximations [25, 6, 1], explicit
feature maps designed for additive kernels [23, 11], hashing [19, 9], and random Fourier features
(RFF) [13] constructed for shift-invariant kernels, the focus of the current paper.

RFFs implement an extremely simple, yet efficient idea: instead of relying on the implicit feature
map λ associated with the kernel, by appealing to Bochner’s theorem [24]—any bounded, contin-
uous, shift-invariant kernel is the Fourier transform of a probability measure—-[13] proposed an
explicit low-dimensional random Fourier feature map φ obtained by empirically approximating the
Fourier integral so that k(x,y) ≈ 〈φ(x), φ(y)〉. The advantage of this explicit low-dimensional
feature representation is that the kernel machine can be efficiently solved in the primal form through
fast linear solvers, thereby enabling to handle large-scale data. Through numerical experiments, it
has also been demonstrated that kernel algorithms constructed using the approximate kernel do not
∗Contributed equally.
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suffer from significant performance degradation [13]. Another advantage with the RFF approach is
that unlike low rank matrix approximation approach [25, 6] which also speeds up kernel machines,
it approximates the entire kernel function and not just the kernel matrix. This property is particu-
larly useful while dealing with out-of-sample data and also in online learning applications. The RFF
technique has found wide applicability in several areas such as fast function-to-function regression
[12], differential privacy preserving [2] and causal discovery [10].

Despite the success of the RFF method, surprisingly, very little is known about its performance guar-
antees. To the best of our knowledge, the only paper in the machine learning literature providing
certain theoretical insight into the accuracy of kernel approximation via RFF is [13, 22]:1 it shows
that Am := sup{|k(x,y) − 〈φ(x), φ(y)〉R2m | : x,y ∈ S} = Op(

√
log(m)/m) for any compact

set S ⊂ Rd, where m is the number of random Fourier features. However, since the approximation
proposed by the RFF method involves empirically approximating the Fourier integral, the RFF esti-
mator can be thought of as an empirical characteristic function (ECF). In the probability literature,
the systematic study of ECF-s was initiated by [7] and followed up by [5, 4, 27]. While [7] shows
the almost sure (a.s.) convergence of Am to zero, [5, Theorems 1 and 2] and [27, Theorems 6.2 and
6.3] show that the optimal rate ism−1/2. In addition, [7] shows that almost sure convergence cannot
be attained over the entire space (i.e., Rd) if the characteristic function decays to zero at infinity.
Due to this, [5, 27] study the convergence behavior of Am when the diameter of S grows with m
and show that almost sure convergence of Am is guaranteed as long as the diameter of S is eo(m).
Unfortunately, all these results (to the best of our knowledge) are asymptotic in nature and the only
known finite-sample guarantee by [13, 22] is non-optimal. In this paper (see Section 3), we present
a finite-sample probabilistic bound for Am that holds for any m and provides the optimal rate of
m−1/2 for any compact set S along with guaranteeing the almost sure convergence of Am as long
as the diameter of S is eo(m). Since convergence in uniform norm might sometimes be a too strong
requirement and may not be suitable to attain correct rates in the generalization bounds associated
with learning algorithms involving RFF,2 we also study the behavior of k(x,y)− 〈φ(x), φ(y)〉R2m

in Lr-norm (1 ≤ r < ∞) and obtain an optimal rate of m−1/2. The RFF approach to approximate
a translation-invariant kernel can be seen as a special of the problem of approximating a function in
the barycenter of a family (say F) of functions, which was considered in [14]. However, the approx-
imation guarantees in [14, Theorem 3.2] do not directly apply to RFF as the assumptions on F are
not satisfied by the cosine function, which is the family of functions that is used to approximate the
kernel in the RFF approach. While a careful modification of the proof of [14, Theorem 3.2] could
yield m−1/2 rate of approximation for any compact set S, this result would still be sub-optimal by
providing a linear dependence on |S| similar to the theorems in [13, 22], in contrast to the optimal
logarithmic dependence on |S| that is guaranteed by our results.

Traditionally, kernel based algorithms involve computing the value of the kernel. Recently, ker-
nel algorithms involving the derivatives of the kernel (i.e., the Gram matrix consists of derivatives
of the kernel computed at training samples) have been used to address numerous machine learn-
ing tasks, e.g., semi-supervised or Hermite learning with gradient information [28, 18], nonlin-
ear variable selection [15, 16], (multi-task) gradient learning [26] and fitting of distributions in an
infinite-dimensional exponential family [20]. Given the importance of these derivative based ker-
nel algorithms, similar to [13], in Section 4, we propose a finite dimensional random feature map
approximation to kernel derivatives, which can be used to speed up the above mentioned derivative
based kernel algorithms. We present a finite-sample bound that quantifies the quality of approxima-
tion in uniform and Lr-norms and show the rate of convergence to be m−1/2 in both these cases.

A summary of our contributions are as follows. We

1. provide the first detailed finite-sample performance analysis of RFFs for approximating kernels
and their derivatives.

2. prove uniform and Lr convergence on fixed compacts sets with optimal rate in terms of the RFF
dimension (m);

3. give sufficient conditions for the growth rate of compact sets while preserving a.s. convergence
uniformly and in Lr; specializing our result we match the best attainable asymptotic growth rate.

1[22] derived tighter constants compared to [13] and also considered different RFF implementations.
2For example, in applications like kernel ridge regression based on RFF, it is more appropriate to consider

the approximation guarantee in L2 norm than in the uniform norm.
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Various notations and definitions that are used throughout the paper are provided in Section 2 along
with a brief review of RFF approximation proposed by [13]. The missing proofs of the results in
Sections 3 and 4 are provided in the supplementary material.

2 Notations & preliminaries

In this section, we introduce notations that are used throughout the paper and then present prelimi-
naries on kernel approximation through random feature maps as introduced by [13].

Definitions & Notation: For a topological space X , C(X ) (resp. Cb(X )) denotes the space of all
continuous (resp. bounded continuous) functions on X . For f ∈ Cb(X ), ‖f‖X := supx∈X |f(x)|
is the supremum norm of f . Mb(X ) and M1

+(X ) is the set of all finite Borel and probability mea-
sures on X , respectively. For µ ∈ Mb(X ), Lr(X , µ) denotes the Banach space of r-power (r ≥ 1)
µ-integrable functions. For X ⊆ Rd, we will use Lr(X ) for Lr(X , µ) if µ is a Lebesgue measure
on X . For f ∈ Lr(X , µ), ‖f‖Lr(X ,µ) :=

(∫
X |f |

r dµ
)1/r

denotes the Lr-norm of f for 1 ≤ r <∞
and we write it as ‖·‖Lr(X ) ifX ⊆ Rd and µ is the Lebesgue measure. For any f ∈ L1(X ,P) where

P ∈M1
+(X ), we define Pf :=

∫
X f(x) dP(x) and Pmf := 1

m

∑m
i=1 f(Xi) where (Xi)

m
i=1

i.i.d.∼ P,
Pm := 1

m

∑m
i=1 δXi is the empirical measure and δx is a Dirac measure supported on x ∈ X .

supp(P) denotes the support of P. Pm := ⊗mj=1P denotes the m-fold product measure.

For v := (v1, . . . , vd) ∈ Rd, ‖v‖2 :=
√∑d

i=1 v
2
i . The diameter of A ⊆ Y where (Y, ρ) is a metric

space is defined as |A|ρ := sup{ρ(x, y) : x, y ∈ Y}. If Y = Rd with ρ = ‖·‖2, we denote the diam-
eter of A as |A|; |A| <∞ if A is compact. The volume of A ⊆ Rd is defined as vol(A) =

∫
A

1 dx.
For A ⊆ Rd, we define A∆ := A−A = {x− y : x,y ∈ A}. conv(A) is the convex hull of A. For

a function g defined on open set B ⊆ Rd × Rd, ∂p,qg(x,y) := ∂|p|+|q|g(x,y)

∂x
p1
1 ···∂x

pd
d ∂y

q1
1 ···∂y

qd
d

, (x,y) ∈ B,

where p,q ∈ Nd are multi-indices, |p| =
∑d
j=1 pj and N := {0, 1, 2, . . .}. Define vp =

∏d
j=1 v

pj
j .

For positive sequences (an)n∈N, (bn)n∈N, an = o(bn) if limn→∞
an
bn

= 0. Xn = Op(rn) (resp.
Oa.s.(rn)) denotes that Xnrn is bounded in probability (resp. almost surely). Γ(t) =

∫∞
0
xt−1e−x dx

is the Gamma function, Γ
(

1
2

)
=
√
π and Γ(t+ 1) = tΓ(t).

Random feature maps: Let k : Rd × Rd → R be a bounded, continuous, positive definite,
translation-invariant kernel, i.e., there exists a positive definite function ψ : Rd → R such that
k(x,y) = ψ(x − y), x,y ∈ Rd where ψ ∈ Cb(Rd). By Bochner’s theorem [24, Theorem 6.6], ψ
can be represented as the Fourier transform of a finite non-negative Borel measure Λ on Rd, i.e.,

k(x,y) = ψ(x− y) =

∫
Rd
e
√
−1ωT (x−y)dΛ(ω)

(?)
=

∫
Rd

cos
(
ωT (x− y)

)
dΛ(ω), (1)

where (?) follows from the fact that ψ is real-valued and symmetric. Since Λ(Rd) = ψ(0),
k(x,y) = ψ(0)

∫
e
√
−1ωT (x−y) dP(ω) where P := Λ

ψ(0) ∈ M1
+(Rd). Therefore, w.l.o.g., we

assume throughout the paper that ψ(0) = 1 and so Λ ∈ M1
+(Rd). Based on (1), [13] proposed an

approximation to k by replacing Λ with its empirical measure, Λm constructed from (ωi)
m
i=1

i.i.d.∼ Λ
so that resultant approximation can be written as the Euclidean inner product of finite dimensional
random feature maps, i.e.,

k̂(x,y) =
1

m

m∑
i=1

cos
(
ωTi (x− y)

) (∗)
= 〈φ(x), φ(y)〉R2m , (2)

where φ(x) = 1√
m

(cos(ωT1 x), . . . , cos(ωTmx), sin(ωT1 x), . . . , sin(ωTmx)) and (∗) holds based on
the basic trigonometric identity: cos(a−b) = cos a cos b+sin a sin b. This elegant approximation to
k is particularly useful in speeding up kernel-based algorithms as the finite-dimensional random fea-
ture map φ can be used to solve these algorithms in the primal thereby offering better computational
complexity (than by solving them in the dual) while at the same time not lacking in performance.
Apart from these practical advantages, [13, Claim 1] (and similarly, [22, Prop. 1]) provides a theoret-
ical guarantee that ‖k̂ − k‖S×S → 0 as m→∞ for any compact set S ⊂ Rd. Formally, [13, Claim
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1] showed that—note that (3) is slightly different but more precise than the one in the statement of
Claim 1 in [13]—for any ε > 0,

Λm
({

(ωi)
m
i=1 : ‖k̂ − k‖S×S ≥ ε

})
≤ Cd

(
|S|σε−1

) 2d
d+2 e−

mε2

4(d+2) , (3)

where σ2 :=
∫
‖ω‖2 dΛ(ω) and Cd := 2

6d+2
d+2

((
2
d

) d
d+2 +

(
d
2

) 2
d+2

)
≤ 27d

2
d+2 when d ≥ 2. The

condition σ2 < ∞ implies that ψ (and therefore k) is twice differentiable. From (3) it is clear that
the probability has polynomial tails if ε < |S|σ (i.e., small ε) and Gaussian tails if ε ≥ |S|σ (i.e.,
large ε) and can be equivalently written as

Λm
({

(ωi)
m
i=1 : ‖k̂ − k‖S×S ≥ C

d+2
2d

d |S|σ
√
m−1 logm

})
≤ m

α
4(d+2) (logm)−

d
d+2 , (4)

where α := 4d− C
d+2
d

d |S|2σ2. For |S| sufficiently large (i.e., α < 0), it follows from (4) that

‖k̂ − k‖S×S = Op

(
|S|
√
m−1 logm

)
. (5)

While (5) shows that k̂ is a consistent estimator of k in the topology of compact convergence (i.e.,
k̂ convergences to k uniformly over compact sets), the rate of convergence of

√
(logm)/m is not

optimal. In addition, the order of dependence on |S| is not optimal. While a faster rate (in fact,
an optimal rate) of convergence is desired—better rates in (5) can lead to better convergence rates
for the excess error of the kernel machine constructed using k̂—, the order of dependence on |S| is
also important as it determines the the number of RFF features (i.e., m) that are needed to achieve
a given approximation accuracy. In fact, the order of dependence on |S| controls the rate at which
|S| can be grown as a function of m when m → ∞ (see Remark 1(ii) for a detailed discussion
about the significance of growing |S|). In the following section, we present an analogue of (4)—see
Theorem 1—that provides optimal rates and has correct dependence on |S|.

3 Main results: approximation of k

As discussed in Sections 1 and 2, while the random feature map approximation of k introduced by
[13] has many practical advantages, it does not seem to be theoretically well-understood. The exist-
ing theoretical results on the quality of approximation do not provide a complete picture owing to
their non-optimality. In this section, we first present our main result (see Theorem 1) that improves
upon (4) and provides a rate of m−1/2 with logarithm dependence on |S|. We then discuss the con-
sequences of Theorem 1 along with its optimality in Remark 1. Next, in Corollary 2 and Theorem 3,
we discuss the Lr-convergence (1 ≤ r <∞) of k̂ to k over compact subsets of Rd.
Theorem 1. Suppose k(x,y) = ψ(x − y), x, y ∈ Rd where ψ ∈ Cb(Rd) is positive definite and
σ2 :=

∫
‖ω‖2 dΛ(ω) <∞. Then for any τ > 0 and non-empty compact set S ⊂ Rd,

Λm

({
(ωi)

m
i=1 : ‖k̂ − k‖S×S ≥

h(d, |S|, σ) +
√

2τ√
m

})
≤ e−τ ,

where h(d, |S|, σ) := 32
√

2d log(2|S|+ 1) + 32
√

2d log(σ + 1) + 16
√

2d[log(2|S|+ 1)]−1.

Proof (sketch). Note that ‖k̂ − k‖S×S = supx,y∈S |k̂(x,y) − k(x,y)| = supg∈G |Λmg − Λg|,
where G := {gx,y(ω) = cos(ωT (x − y)) : x,y ∈ S}, which means the object of interest is the
suprema of an empirical process indexed by G. Instead of bounding supg∈G |Λmg − Λg| by using
Hoeffding’s inequality on a cover of G and then applying union bound as carried out in [13, 22],
we use the refined technique of applying concentration via McDiarmid’s inequality, followed by
symmetrization and bound the Rademacher average by Dudley entropy bound. The result is obtained
by carefully bounding the L2(Λm)-covering number of G. The details are provided in Section B.1
of the supplementary material.

Remark 1. (i) Theorem 1 shows that k̂ is a consistent estimator of k in the topology of compact con-
vergence asm→∞with the rate of a.s. convergence being

√
m−1 log |S| (almost sure convergence

is guaranteed by the first Borel-Cantelli lemma). In comparison to (4), it is clear that Theorem 1
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provides improved rates with better constants and logarithmic dependence on |S| instead of a linear
dependence. The logarithmic dependence on |S| ensures that we need m = O(ε−2 log |S|) ran-
dom features instead of O(ε−2|S|2 log(|S|/ε)) random features, i.e., significantly fewer features to
achieve the same approximation accuracy of ε.

(ii) Growing diameter: While Theorem 1 provides almost sure convergence uniformly over com-
pact sets, one might wonder whether it is possible to achieve uniform convergence over Rd. [7,
Section 2] showed that such a result is possible if Λ is a discrete measure but not possible for Λ
that is absolutely continuous w.r.t. the Lebesgue measure (i.e., if Λ has a density). Since uniform
convergence of k̂ to k over Rd is not possible for many interesting k (e.g., Gaussian kernel), it is
of interest to study the convergence on S whose diameter grows with m. Therefore, as mentioned
in Section 2, the order of dependence of rates on |S| is critical. Suppose |Sm| → ∞ as m → ∞
(we write |Sm| instead of |S| to show the explicit dependence on m). Then Theorem 1 shows that
k̂ is a consistent estimator of k in the topology of compact convergence if m−1 log |Sm| → 0 as
m → ∞ (i.e., |Sm| = eo(m)) in contrast to the result in (4) which requires |Sm| = o(

√
m/ logm).

In other words, Theorem 1 ensures consistency even when |Sm| grows exponentially in m whereas
(4) ensures consistency only if |Sm| does not grow faster than

√
m/ logm.

(iii) Optimality: Note that ψ is the characteristic function of Λ ∈ M1
+(Rd) since ψ is the Fourier

transform of Λ (by Bochner’s theorem). Therefore, the object of interest ‖k̂−k‖S×S = ‖ψ̂−ψ‖S∆
,

is the uniform norm of the difference between ψ and the empirical characteristic function ψ̂ =
1
m

∑m
i=1 cos(〈ωi, ·〉), when both are restricted to a compact set S∆ ⊂ Rd. The question of the con-

vergence behavior of ‖ψ̂−ψ‖S∆ is not new and has been studied in great detail in the probability and
statistics literature (e.g., see [7, 27] for d = 1 and [4, 5] for d > 1) where the characteristic function
is not just a real-valued symmetric function (like ψ) but is Hermitian. [27, Theorems 6.2 and 6.3]
show that the optimal rate of convergence of ‖ψ̂ − ψ‖S∆

is m−1/2 when d = 1, which matches
with our result in Theorem 1. Also Theorems 1 and 2 in [5] show that the logarithmic dependence
on |Sm| is optimal asymptotically. In particular, [5, Theorem 1] matches with the growing diame-
ter result in Remark 1(ii), while [5, Theorem 2] shows that if Λ is absolutely continuous w.r.t. the
Lebesgue measure and if lim supm→∞m−1 log |Sm| > 0, then there exists a positive ε such that
lim supm→∞ Λm(‖ψ̂ − ψ‖Sm,∆ ≥ ε) > 0. This means the rate |Sm| = eo(m) is not only the best
possible in general for almost sure convergence, but if faster sequence |Sm| is considered then even
stochastic convergence cannot be retained for any characteristic function vanishing at infinity along
at least one path. While these previous results match with that of Theorem 1 (and its consequences),
we would like to highlight the fact that all these previous results are asymptotic in nature whereas
Theorem 1 provides a finite-sample probabilistic inequality that holds for any m. We are not aware
of any such finite-sample result except for the one in [13, 22]. �

Using Theorem 1, one can obtain a probabilistic inequality for the Lr-norm of k̂ − k over any
compact set S ⊂ Rd, as given by the following result.
Corollary 2. Suppose k satisfies the assumptions in Theorem 1. Then for any 1 ≤ r < ∞, τ > 0
and non-empty compact set S ⊂ Rd,

Λm

(ωi)
m
i=1 : ‖k̂ − k‖Lr(S) ≥

(
πd/2|S|d

2dΓ(d2 + 1)

)2/r
h(d, |S|, σ) +

√
2τ√

m


 ≤ e−τ ,

where ‖k̂ − k‖Lr(S) := ‖k̂ − k‖Lr(S×S) =
(∫

S

∫
S
|k̂(x,y)− k(x,y)|r dx dy

) 1
r

.

Proof. Note that
‖k̂ − k‖Lr(S) ≤ ‖k̂ − k‖S×Svol2/r(S).

The result follows by combining Theorem 1 and the fact that vol(S) ≤ vol(A) where A :={
x ∈ Rd : ‖x‖2 ≤ |S|2

}
and vol(A) = πd/2|S|d

2dΓ( d2 +1)
(which follows from [8, Corollary 2.55]).

Corollary 2 shows that ‖k̂−k‖Lr(S) = Oa.s.(m
−1/2|S|2d/r

√
log |S|) and therefore if |Sm| → ∞ as

m→∞, then consistency of k̂ inLr(Sm)-norm is achieved as long asm−1/2|Sm|2d/r
√

log |Sm| →

5



0 as m → ∞. This means, in comparison to the uniform norm in Theorem 1 where |Sm| can grow
exponential in mδ (δ < 1), |Sm| cannot grow faster than m

r
4d (logm)−

r
4d−θ (θ > 0) to achieve

consistency in Lr-norm.

Instead of using Theorem 1 to obtain a bound on ‖k̂ − k‖Lr(S) (this bound may be weak as ‖k̂ −
k‖Lr(S) ≤ ‖k̂ − k‖S×Svol2/r(S) for any 1 ≤ r < ∞), a better bound (for 2 ≤ r < ∞) can be
obtained by directly bounding ‖k̂ − k‖Lr(S), as shown in the following result.

Theorem 3. Suppose k(x,y) = ψ(x−y), x, y ∈ Rd where ψ ∈ Cb(Rd) is positive definite. Then
for any 1 < r <∞, τ > 0 and non-empty compact set S ⊂ Rd,

Λm

(ωi)
m
i=1 : ‖k̂ − k‖Lr(S) ≥

(
πd/2|S|d

2dΓ(d2 + 1)

)2/r (
C ′r

m1−max{ 1
2 ,

1
r }

+

√
2τ√
m

)
 ≤ e−τ ,

where C ′r is the Khintchine constant given by C ′r = 1 for r ∈ (1, 2] and C ′r =
√

2
[
Γ
(
r+1

2

)
/
√
π
] 1
r

for r ∈ [2,∞).

Proof (sketch). As in Theorem 1, we show that ‖k − k̂‖Lr(S) satisfies the bounded difference prop-
erty, hence by the McDiarmid’s inequality, it concentrates around its expectation E‖k − k̂‖Lr(S).
By symmetrization, we show then show that E‖k − k̂‖Lr(S) is upper bounded in terms of
Eε ‖

∑m
i=1 εi cos(〈ωi, · − ·〉)‖Lr(S)

, where ε := (εi)
m
i=1 are Rademacher random variables. By

exploiting the fact that Lr(S) is a Banach space of type min{r, 2}, the result follows. The details
are provided in Section B.2 of the supplementary material.

Remark 2. Theorem 3 shows an improved dependence on |S|without the extra
√

log |S| factor given
in Corollary 2 and therefore provides a better rate for 2 ≤ r <∞ when the diameter of S grows, i.e.,
‖k̂ − k‖Lr(Sm)

a.s.→ 0 if |Sm| = o(m
r
4d ) as m →∞. However, for 1 < r < 2, Theorem 3 provides

a slower rate than Corollary 2 and therefore it is appropriate to use the bound in Corollary 2. While
one might wonder why we only considered the convergence of ‖k̂−k‖Lr(S) and not ‖k̂−k‖Lr(Rd),
it is important to note that the latter is not well-defined because k̂ /∈ Lr(Rd) even if k ∈ Lr(Rd). �

4 Approximation of kernel derivatives

In the previous section we focused on the approximation of the kernel function where we presented
uniform and Lr convergence guarantees on compact sets for the random Fourier feature approx-
imation, and discussed how fast the diameter of these sets can grow to preserve uniform and Lr
convergence almost surely. In this section, we propose an approximation to derivatives of the kernel
and analyze the uniform and Lr convergence behavior of the proposed approximation. As motivated
in Section 1, the question of approximating the derivatives of the kernel through finite dimensional
random feature map is also important as it enables to speed up several interesting machine learning
tasks that involve the derivatives of the kernel [28, 18, 15, 16, 26, 20], see for example the recent
infinite dimensional exponential family fitting technique [21], which implements this idea.

To this end, we consider k as in (1) and define ha := cos(πa2 + ·), a ∈ N (in other words
h0 = cos, h1 = − sin, h2 = − cos, h3 = sin and ha = hamod 4). For p,q ∈ Nd, assuming∫
|ωp+q|dΛ(ω) <∞, it follows from the dominated convergence theorem that

∂p,qk(x,y) =

∫
Rd

ωp(−ω)qh|p+q|
(
ωT (x− y)

)
dΛ(ω)

=

∫
Rd

ωp+q
[
h|p|(ω

Tx)h|q|(ω
Ty) + h3+|p|(ω

Tx)h3+|q|(ω
Ty)

]
dΛ(ω),

so that ∂p,qk(x,y) can be approximated by replacing Λ with Λm, resulting in

∂̂p,qk(x,y) := sp,q(x,y) =
1

m

m∑
j=1

ωp
j (−ωj)qh|p+q|

(
ωTj (x− y)

)
= 〈φp(x), φq(y)〉R2m , (6)
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where φp(u) := 1√
m

(
ωp

1 h|p|(ω
T
1 u), · · · ,ωp

mh|p|(ω
T
mu),ωp

1 h3+|p|(ω
T
1 u), · · · ,ωp

mh3+|p|(ω
T
mu)

)
and (ωj)

m
j=1

i.i.d.∼ Λ. Now the goal is to understand the behavior of ‖sp,q − ∂p,qk‖S×S and
‖sp,q − ∂p,qk‖Lr(S) for r ∈ [1,∞), i.e., obtain analogues of Theorems 1 and 3.

As in the proof sketch of Theorem 1, while ‖sp,q−∂p,qk‖S×S can be analyzed as the suprema of an
empirical process indexed by a suitable function class (say G), some technical issues arise because
G is not uniformly bounded. This means McDiarmid or Talagrand’s inequality cannot be applied
to achieve concentration and bounding Rademacher average by Dudley entropy bound may not be
reasonable. While these issues can be tackled by resorting to more technical and refined methods,
in this paper, we generalize (see Theorem 4 which is proved in Section B.1 of the supplement)
Theorem 1 to derivatives under the restrictive assumption that supp(Λ) is bounded (note that many
popular kernels including the Gaussian do not satisfy this assumption). We also present another
result (see Theorem 5) by generalizing the proof technique3 of [13] to unbounded functions where
the boundedness assumption of supp(Λ) is relaxed but at the expense of a worse rate (compared to
Theorem 4).

Theorem 4. Let p,q ∈ Nd, Tp,q := supω∈supp(Λ) |ωp+q|, Cp,q := Eω∼Λ

[
|ωp+q| ‖ω‖22

]
, and

assume that C2p,2q < ∞. Suppose supp(Λ) is bounded if p 6= 0 and q 6= 0. Then for any τ > 0
and non-empty compact set S ⊂ Rd,

Λm

({
(ωi)

m
i=1 : ‖∂p,qk − sp,q‖S×S ≥

H(d,p,q, |S|) + Tp,q
√

2τ√
m

})
≤ e−τ ,

where

H(d,p,q, |S|) = 32
√

2d T2p,2q

[√
U(p,q, |S|) +

1

2
√
U(p,q, |S|)

+

√
log(

√
C2p,2q + 1)

]

and U(p,q, |S|) = log
(

2|S|T−1/2
2p,2q + 1

)
.

Remark 3. (i) Note that Theorem 4 reduces to Theorem 1 if p = q = 0, in which case
Tp,q = T2p,2q = 1. If p 6= 0 or q 6= 0, then the boundedness of supp(Λ) implies that Tp,q < ∞
and T2p,2q <∞.

(ii) Growth of |Sm|: By the same reasoning as in Remark 1(ii) and Corollary 2, it follows
that ‖∂p,qk − sp,q‖Sm×Sm

a.s.−→ 0 if |Sm| = eo(m) and ‖∂p,qk − sp,q‖Lr(Sm)
a.s.−→ 0 if

m−1/2|Sm|2d/r
√

log |Sm| → 0 (for 1 ≤ r <∞) as m→∞. An exact analogue of Theorem 3 can
be obtained (but with different constants) under the assumption that supp(Λ) is bounded and it can
be shown that for r ∈ [2,∞), ‖∂p,qk − sp,q‖Lr(Sm)

a.s.−→ 0 if |Sm| = o(m
r
4d ). �

The following result relaxes the boundedness of supp(Λ) by imposing certain moment conditions on
Λ but at the expense of a worse rate. The proof relies on applying Bernstein inequality at the elements
of a net (which exists by the compactness of S) combined with a union bound, and extending the
approximation error from the anchors by a probabilistic Lipschitz argument.

Theorem 5. Let p,q ∈ Nd, ψ be continuously differentiable, z 7→ ∇z [∂p,qk(z)] be continuous,
S ⊂ Rd be any non-empty compact set, Dp,q,S := supz∈conv(S∆) ‖∇z [∂p,qk(z)]‖2 and Ep,q :=

Eω∼Λ [|ωp+q| ‖ω‖2]. Assume that Ep,q <∞. Suppose ∃L > 0, σ > 0 such that

Eω∼Λ

[
|f(z;ω)|M

]
≤ M !σ2LM−2

2
(∀M ≥ 2,∀z ∈ S∆), (7)

3We also correct some technical issues in the proof of [13, Claim 1], where (i) a shift-invariant argument was
applied to the non-shift invariant kernel estimator k̂(x,y) = 1

m

∑m
j=1 2 cos(ω

T
j x + bj) cos(ω

T
j y + bj) =

1
m

∑m
j=1

[
cos(ωT

j (x− y)) + cos(ωT
j (x + y) + 2bj)

]
, (ii) the convexity of S was not imposed leading to

possibly undefined Lipschitz constant (L) and (iii) the randomness of ∆∗ = argmax∆∈S∆

∥∥∇[k(∆) −
k̂(∆)]

∥∥
2

was not taken into account, thus the upper bound on the expectation of the squared Lipschitz constant
(E[L2]) does not hold.
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where f(z;ω) = ∂p,qk(z)− ωp(−ω)qh|p+q|
(
ωT z

)
. Define Fd := d−

d
d+1 + d

1
d+1 .4 Then

Λm ({(ωi)mi=1 : ‖∂p,qk − sp,q‖S×S ≥ ε}) ≤

≤ 2d−1e
− mε2

8σ2(1+ εL
2σ2 ) + Fd2

4d−1
d+1

[
|S|(Dp,q,S + Ep,q)

ε

] d
d+1

e
− mε2

8(d+1)σ2(1+ εL
2σ2 ) . (8)

Remark 4. (i) The compactness of S implies that of S∆. Hence, by the continuity of z 7→
∇z [∂p,qk(z)], one gets Dp,q,S < ∞. (7) holds if |f(z;ω)| ≤ L

2 and Eω∼Λ

[
|f(z;ω)|2

]
≤ σ2

(∀z ∈ S∆). If supp(Λ) is bounded, then the boundedness of f is guaranteed (see Section B.4 in the
supplement).

(ii) In the special case when p = q = 0, our requirement boils down to the continuously differen-
tiability of ψ, E0,0 = Eω∼Λ ‖ω‖2 <∞, and (7).

(iii) Note that (8) is similar to (3) and therefore based on the discussion in Section 2, one has
‖∂p,qk − sp,q‖S×S = Oa.s.(|S|

√
m−1 logm). But the advantage with Theorem 5 over [13, Claim

1] and [22, Prop. 1] is that it can handle unbounded functions. In comparison to Theorem 4, we
obtain worse rates and it will be of interest to improve the rates of Theorem 5 while handling un-
bounded functions. �

5 Discussion

In this paper, we presented the first detailed theoretical analysis about the approximation quality of
random Fourier features (RFF) that was proposed by [13] in the context of improving the computa-
tional complexity of kernel machines. While [13, 22] provided a probabilistic bound on the uniform
approximation (over compact subsets of Rd) of a kernel by random features, the result is not opti-
mal. We improved this result by providing a finite-sample bound with optimal rate of convergence
and also analyzed the quality of approximation in Lr-norm (1 ≤ r < ∞). We also proposed an
RFF approximation for derivatives of a kernel and provided theoretical guarantees on the quality of
approximation in uniform and Lr-norms over compact subsets of Rd.

While all the results in this paper (and also in the literature) dealt with the approximation quality
of RFF over only compact subsets of Rd, it is of interest to understand its behavior over entire Rd.
However, as discussed in Remark 1(ii) and in the paragraph following Theorem 3, RFF cannot ap-
proximate the kernel uniformly or in Lr-norm over Rd. By truncating the Taylor series expansion
of the exponential function, [3] proposed a non-random finite dimensional representation to approx-
imate the Gaussian kernel which also enjoys the computational advantages of RFF. However, this
representation also does not approximate the Gaussian kernel uniformly over Rd. Therefore, the
question remains whether it is possible to approximate a kernel uniformly or in Lr-norm over Rd
but still retaining the computational advantages associated with RFF.
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[12] J. Oliva, W. Neiswanger, B. Póczos, E. Xing, and J. Schneider. Fast function to function regression. JMLR
W&CP – AISTATS, pages 717–725, 2015.

[13] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177–1184,
2007.

[14] A. Rahimi and B. Recht. Uniform approximation of functions with random bases. In Allerton, pages
555–561, 2008.

[15] L. Rosasco, M. Santoro, S. Mosci, A. Verri, and S. Villa. A regularization approach to nonlinear variable
selection. JMLR W&CP – AISTATS, 9:653–660, 2010.

[16] L. Rosasco, S. Villa, S. Mosci, M. Santoro, and A. Verri. Nonparametric sparsity and regularization.
Journal of Machine Learning Research, 14:1665–1714, 2013.

[17] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Opti-
mization, and Beyond. MIT Press, 2002.

[18] L. Shi, X. Guo, and D.-X. Zhou. Hermite learning with gradient data. Journal of Computational and
Applied Mathematics, 233:3046–3059, 2010.

[19] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, A. Strehl, and V. Vishwanathan. Hash kernels.
AISTATS, 5:496–503, 2009.

[20] B. K. Sriperumbudur, K. Fukumizu, A. Gretton, A. Hyvärinen, and R. Kumar. Density estimation in
infinite dimensional exponential families. Technical report, 2014. http://arxiv.org/pdf/1312.
3516.pdf.

[21] H. Strathmann, D. Sejdinovic, S. Livingstone, Z. Szabó, and A. Gretton. Gradient-free Hamiltonian
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Supplement

A Definitions & notation

Let (Z, ρ) be a metric space, (Ω,A) a measurable space and L0(Ω,A) denotes the set of (Ω,A) 7→ R measurable functions.
A family of maps G = {gz}z∈Z ⊆ L0(Ω,A) is called a separable Carathéodory family w.r.t. Z if (Z, ρ) is separable and
z 7→ gz(ω) is continuous for all ω ∈ Ω. Let G ⊆ L0(Ω,A), ε = (ε1, . . . , εm) be a Rademacher sequence, i.e., εj-s are
i.i.d. and P(εj = 1) = P(εj = −1) = 1

2 , and (ωj)
m
j=1 ∈ Ωm. The Rademacher average of G is defined as R (G,ω1:m) :=

Eε supg∈G

∣∣∣ 1
m

∑m
j=1 εjg(ωj)

∣∣∣; we use the shorthand ω1:m = (ω1, . . . ,ωm). S ⊆ Z is said to be an r-net of Z if for any
z ∈ Z there is an s ∈ S such that ρ(s, z) ≤ r. The r-covering number of Z is defined as the size of the smallest r-net, i.e.,
N (Z, ρ, r) = inf

{
` ≥ 1 : ∃ s1, . . . , s` such that Z ⊆ ∪`j=1Bρ(sj , r)

}
, where Bρ(s, r) = {z ∈ Z : ρ(z, s) ≤ r} is the closed

ball with center s ∈ Z and radius r. logN (Z, ρ, r) is called the metric entropy. A (Z, ‖·‖) Banach space is said to be of type

q ∈ (1, 2] if there exists a constant C ∈ R such that the Eε

∥∥∥∑m
j=1 εjfj

∥∥∥ ≤ C
(∑m

j=1 ‖fj‖
q
) 1
q

holds for every finite set of
vectors {fj}mj=1 ⊆ Z. For example, Lr(Ω,A, µ) spaces are of type q = min(2, r) [6, page 73], where the C constant only
depends on r (C = Cr). For a (Z, ‖·‖) normed space, Z∗ denotes the space of continuous linear functionals on Z.

B Proofs

We provide proofs of the results presented in Sections 3 and 4. Lemmas used in the proofs are enlisted in Section C.

B.1 Proof of Theorems 1 and 4

Below we prove Theorem 4, thereby Theorem 1 (p = q = 0). The idea of the proof is as follows: (i) We note that

‖∂p,qk − sp,q‖S×S = sup
x,y∈S

|∂p,qk(x,y)− sp,q(x,y)| = sup
g∈G
|Λg − Λmg| =: ‖Λ− Λm‖G , (B.1)

where G := {gz : z ∈ S∆} and gz : supp(Λ) → R, ω 7→ ωp(−ω)qh|p+q|
(
ωT z

)
, which means the object of interest is

the suprema of an empirical process indexed by G. (ii) We show that ‖Λ− Λm‖G is measurable w.r.t. Λm by verifying that G
is a separable Carathéodory family (see the discussion following Definition 7.4 in [9]). (iii) (B.1) can be shown to satisfy the
bounded difference property in C.1 and therefore by McDiarmid’s inequality (Lemma C.1), ‖Λ− Λm‖G concentrates around its
expectation. (iv) By applying the symmetrization lemma [9, Proposition 7.10] for the uniformly bounded function family G, we
obtain an upper bound in terms of the expected Rademacher average of G. (v) The Rademacher average is bounded by the metric
entropy of G (making use of the Dudley’s entropy integral [2, Equation 4.4]), for which we can get an estimate by showing that
G is a smoothly parametrized function class using the compactness of S∆.

• G is a separable Carathéodory family: G is a separable Carathéodory family w.r.t. S∆ since
1. gz : supp(Λ)→ R, ω 7→ ωp(−ω)qh|p+q|

(
ωT z

)
is measurable for all z ∈ S∆.

2. S∆ ⊆ Rd is separable since Rd is separable.
3. z 7→ ωp(−ω)qh|p+q|

(
ωT z

)
is continuous for all ω ∈ supp(Λ).

• Concentration of ‖Λ− Λm‖G by its bounded difference property: By defining f(ω1, . . . ,ωm) := ‖Λ− Λm‖G , we
have that for ∀i ∈ {1, . . . ,m},

|f(ω1, . . . ,ωi−1,ωi,ωi+1, . . . ,ωm)− f(ω1, . . . ,ωi−1,ω
′
i,ωi+1, . . . ,ωm)| =

=

∣∣∣∣∣∣sup
g∈G

∣∣∣Λg − 1

m

m∑
j=1

g(ωj)
∣∣∣− sup

g∈G

∣∣∣Λg − 1

m

m∑
j=1

g(ωj) +
1

m
[g(ωi)− g(ω′i)]

∣∣∣
∣∣∣∣∣∣ ≤ 1

m
sup
g∈G
|g(ωi)− g(ω′i)|

≤ 1

m
sup
g∈G

(|g(ωi)|+ |g(ω′i)|) ≤
1

m

[
sup
g∈G
|g(ωi)|+ sup

g∈G
|g(ω′i)|

]
≤ 1

m

[
|ωp+q
i |+ |(ω′i)p+q|

]
≤ 2Tp,q

m
.

Applying McDiarmid’s inequality (Lemma C.1) to f , for any τ > 0, with probability at least 1 − e−τ over the choice of
(ωi)

m
i=1

i.i.d.∼ Λ,

‖Λ− Λm‖G ≤ Eω1:m
‖Λ− Λm‖G + Tp,q

√
2τ

m
. (B.2)
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• Bounding Eω1:m
‖Λ− Λm‖G: By the symmetrization lemma [9, Proposition 7.10] applied for the uniformly bounded

function family G (supg∈G ‖g‖∞ ≤ Tp,q <∞), we have

Eω1:m ‖Λ− Λm‖G ≤ 2Eω1:mR (G,ω1:m) . (B.3)

• Bounding R (G,ω1:m): Using Dudley’s entropy integral [2, Equation 4.4], we have

R (G,ω1:m) ≤ 8
√

2√
m

∫ |G|L2(Λm)

0

√
logN (G, L2(Λm), r) dr. (B.4)

The upper limit of the integral can be bounded as

|G|L2(Λm) = sup
g1,g2∈G

‖g1 − g2‖L2(Λm) ≤ sup
g1,g2∈G

(
‖g1‖+ ‖g2‖L2(Λm)

)
≤ 2 sup

g∈G
‖g‖L2(Λm)

(∗)
≤ 2

√
T2p,2q, (B.5)

where (∗) follows from

sup
g∈G
‖g‖L2(Λm) = sup

z∈S∆

√√√√ 1

m

m∑
j=1

g2
z(ωj) = sup

z∈S∆

√√√√ 1

m

m∑
j=1

[
ωp
j (−ωj)qh|p+q|

(
ωTj z

)]2 ≤
√√√√ 1

m

m∑
j=1

ω
2(p+q)
j ≤

√
T2p,2q.

• Bounding N (G, L2(Λm), r) by the compactness of S∆: For any gz1
, gz2

∈ G,

‖gz1
− gz2

‖L2(Λm) =
∥∥ω 7→ ωp(−ω)q

(
h|p+q|

(
ωT z1

)
− h|p+q|

(
ωT z2

))∥∥
L2(Λm)

.

By the mean value theorem, there exists c ∈ (0, 1) such that∣∣h|p+q|
(
ωT z1

)
− h|p+q|

(
ωT z2

)∣∣ ≤ ∥∥∇zh|p+q|
(
ωT (cz1 + (1− c)z2)

)∥∥
2
‖z1 − z2‖2 ,

where ∥∥∇zh|p+q|
(
ωT (cz1 + (1− c)z2)

)∥∥
2
≤ ‖ω‖2.

Therefore,

‖gz1
− gz2

‖L2(Λm) ≤

√√√√ 1

m

m∑
j=1

(∣∣ωp+q
j

∣∣ ‖ωj‖2 ‖z1 − z2‖2
)2

= ‖z1 − z2‖2

√√√√ 1

m

m∑
j=1

∣∣∣ω2(p+q)
j

∣∣∣ ‖ωj‖22. (B.6)

(B.6) shows that the existence of an ε-net on (S∆, ‖·‖2) implies an r = ε

√
1
m

∑m
j=1

∣∣∣ω2(p+q)
j

∣∣∣ ‖ωj‖22-net on (G, L2(Λm)).

In other words,

N
(
G, L2(Λm), r

)
≤ N

S∆, ‖·‖2 , r

 1

m

m∑
j=1

∣∣∣ω2(p+q)
j

∣∣∣ ‖ωj‖22
− 1

2

 .

Define

Ap,q :=

√√√√ 1

m

m∑
j=1

∣∣∣ω2(p+q)
j

∣∣∣ ‖ωj‖22.
By using the fact that S∆ ⊆ B‖·‖2

(
t, |S∆|

2

)
for some t ∈ Rd and N (B‖·‖2(s, R), ‖·‖2 , ε) ≤

(
4R
ε + 1

)d
for any s ∈ Rd

[10, Lemma 2.5, page 20], we obtain

N
(
G, L2(Λm), r

)
≤
(

4|S|Ap,q

r
+ 1

)d
, (B.7)

by noting that |S∆| ≤ 2|S|. Using (B.5) and (B.7) in (B.4), we have

R (G,ω1:m) ≤ 8
√

2d√
m

∫ 2
√
T2p,2q

0

√
log

(
4|S|Ap,q

r
+ 1

)
dr ≤ 8

√
2d√
m

∫ 2
√
T2p,2q

0

√√√√log

(
4|S|Ap,q + 2

√
T2p,2q

r

)
dr,

(B.8)
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where in the last inequality we used the fact that r ≤ 2
√
T2p,2q. By bounding 2|S|Ap,q +

√
T2p,2q ≤ (2|S| +√

T2p,2q)(Ap,q + 1), (B.8) reduces to

R (G,ω1:m) ≤ 8
√

2d√
m

∫ 2
√
T2p,2q

0

√
log

2
(
2|S|+

√
T2p,2q

)
r

dr + 2
√
T2p,2q log(Ap,q + 1)


=

16
√

2d√
m

√
T2p,2q

(∫ 1

0

√
log

Bp,q + 1

r
dr +

√
log(Ap,q + 1)

)
, (B.9)

where the last equality is obtained by changing the variable of integration and defining Bp,q := 2|S|√
T2p,2q

. By applying

Lemma C.2 to bound the integral in (B.9), we obtain

R (G,ω1:m) ≤ 16
√

2d√
m

√
T2p,2q

(√
log(Bp,q + 1) +

1

2
√

log(Bp,q + 1)
+
√

log(Ap,q + 1)

)
. (B.10)

• Bounding the expectation of the Rademacher average: From (B.10), we have

Eω1:m
R (G,ω1:m) ≤ 16

√
2d√
m

√
T2p,2q

[√
log(Bp,q + 1) +

1

2
√

log(Bp,q + 1)
+

√
log
(√

C2p,2q + 1
)]

, (B.11)

which is obtained by repeated applications of Jensen’s inequality to bound Eω1:m

√
log(Ap,q + 1) ≤√

Eω1:m log(Ap,q + 1) ≤
√

log(Eω1:mAp,q + 1) where Eω1:mAp,q ≤
√

1
m

∑m
j=1 Eωj

[∣∣∣ω2(p+q)
j

∣∣∣ ‖ωj‖22] ≤√C2p,2q.

• Final bound: Combining (B.2), (B.3) and (B.11) yields the result.

B.2 Proof of Theorem 3

Below we prove Theorem 3: (i) We show that f(ω1, . . . ,ωm) := ‖k − k̂‖Lr(S) satisfies the bounded difference property, hence
by the McDiarmid’s inequality (Lemma C.1) it concentrates around its expectation E‖k − k̂‖Lr(S). (ii) By Lr(S) =

[
Lr̃(S)

]∗
( 1
r + 1

r̃ = 1), the separability of Lr̃(S) and the symmetrization lemma [11, Lemma 2.3.1] the value of E‖k − k̂‖Lr(S) is
upper bounded in terms of Eε ‖

∑m
i=1 εi cos(〈ωi, · − ·〉)‖Lr(S)

. (iii) Exploiting that Lr(S) is of type min(r, 2) with a constant
independent of S, we get the result.

• Concentration of ‖k − k̂‖Lr(S) by its bounded difference property: Define k̂i(x,y) = 1
m

∑
j 6=i cos(ωTj (x − y)) +

1
m cos(ω̃Ti (x− y)) where ω̃i is an i.i.d. copy of ωi. Then ‖k − k̂‖Lr(S) satisfies the bounded difference property in (C.1):

sup
(ωi)mi=1,ω̃i

∣∣∣‖k − k̂‖Lr(S) − ‖k − k̂i‖Lr(S)

∣∣∣ ≤ sup
(ωi)mi=1,ω̃i

‖k̂i − k̂‖Lr(S) ≤
2

m
sup
ωi

‖ cos(〈ωi, · − ·〉)‖Lr(S) ≤
2

m
vol2/r(S)

and therefore by McDiarmid’s inequality (Lemma C.1), for any τ > 0, with probability at least 1− e−τ over the choice of
(ωi)

m
i=1 ∼ Λ, we have

‖k − k̂‖Lr(S) ≤ Eω1:m
‖k − k̂‖Lr(S) + vol2/r(S)

√
2τ

m
. (B.12)

• Symmetrization, reduction to Eε ‖
∑m
i=1 εi cos(〈ωi, · − ·〉)‖Lr(S)

: Let r̃ be the dual exponent of r, in other words 1
r+ 1

r̃ =

1. Then, byLr(S) =
[
Lr̃(S)

]∗
and the separability ofLr̃(S), there exists (see Lemma C.4) a countable G ⊆ Lr̃(S) (∀g ∈ G,

‖g‖Lr̃(S) = 1) such that

‖k − k̂‖Lr(S) = sup
g∈G

∣∣∣∣∫
S×S

g(x,y)
[
k(x,y)− k̂(x,y)

]
dxdy

∣∣∣∣ . (B.13)

One can rewrite the argument of this supremum by Eqs. (1)-(2) as∫
S×S

g(x,y)
[
k(x,y)− k̂(x,y)

]
dxdy =

∫
S×S

g(x,y)

[∫
Rd

cos(ωT (x− y))d(Λ− Λm)(ω)

]
dxdy

=

∫
Rd

[∫
S×S

g(x,y) cos(ωT (x− y))dxdy

]
d(Λ− Λm)(ω),
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and thus

‖k − k̂‖Lr(S) = sup
g̃∈G̃
|(Λ− Λm)g̃| , (B.14)

where G̃ := {g̃g : g ∈ G}, g̃g(ω) =
∫
S×S g(x,y) cos(ωT (x − y))dxdy and g̃g is continuous. Hence, using (B.14) with

the symmetrization lemma [11, Lemma 2.3.1] and (B.13), we have

Eω1:m‖k − k̂‖Lr(S) ≤ 2Eω1:mEε sup
g̃∈G̃

∣∣∣∣∣ 1

m

m∑
i=1

εig̃(ωi)

∣∣∣∣∣ =
2

m
Eω1:mEε sup

g∈G

∣∣∣∣∣
m∑
i=1

εi

∫
S×S

g(x,y) cos
(
ωTi (x− y)

)
dxdy

∣∣∣∣∣
=

2

m
Eω1:m

Eε sup
g∈G

∣∣∣∣∣
∫
S×S

g(x,y)

[
m∑
i=1

εi cos
(
ωTi (x− y)

)]
dxdy

∣∣∣∣∣ =
2

m
Eω1:m

Eε

∥∥∥∥∥
m∑
i=1

εi cos(〈ωi, · − ·〉)

∥∥∥∥∥
Lr(S)

,(B.15)

where (εi)
m
i=1 is a Rademacher sequence and Eε is the conditional expectation w.r.t. (εi)

m
i=1 with (ωi)

m
i=1 being the

conditioning random variables. Notice that the measurability of g̃g-s with the countable cardinality of G̃ enabled us to
write expectations instead of outer expectations in [11, Lemma 2.3.1, page 108-110], and hence in Eq. (B.15).

• Bounding Eε ‖
∑m
i=1 εi cos(〈ωi, · − ·〉)‖Lr(S)

by the type of Lr(S):

Eε

∥∥∥∥∥
m∑
i=1

εi cos(〈ωi, · − ·〉)

∥∥∥∥∥
Lr(S)

(∗)
≤ C ′r

(
m∑
i=1

‖ cos(〈ωi, · − ·〉)‖min{r,2}
Lr(S)

) 1
min{r,2}

≤ C ′rvol2/r(S)mmax{ 1
2 ,

1
r }, (B.16)

since Lr(S) is of type min(2, r) [6, page 73] and there exists a universal constant C ′r independent of S (the so-called
Khintchine constant) [5, page 247] such that (∗) holds; in addition we used

m∑
i=1

‖ cos(〈ωi, · − ·〉)‖min{2,r}
Lr(S) =

m∑
i=1

(∫
S×S

∣∣cos(ωTi (x− y))
∣∣r dxdy

)min{2,r}
r

≤ m
[
vol2(S)

]min{2,r}
r ,

and 1
min{2,r} = max

{
1
2 ,

1
r

}
.

Combining (B.12)–(B.16) and using the bound on vol(S) given in the proof of Corollary 2 yields the result.

B.3 Proof of Theorem 5

Below we give the detailed proof of Theorem 5. At high-level the proof goes as follows: (i) By the compactness of S∆ (implied
by that of S) one can take an r-net covering S∆ (for any r > 0). (ii) Small approximation error can be guaranteed at the
centers of the r-net by Bernstein’s inequality combined with a union bound. (iii) Propagation of the error from the centers to
arbitrary points is achieved by Lipschitzness. (iv) The Lipschitz constant is, however, a random quantity and we show with high
probability that it is ‘not too large’. (v) Union bounding the two events (small errors at the centers and small Lipschitz constant)
leads to a uniform bound for arbitrary r, which holds with high probability. (vi) Optimizing over r gives the stated result.

Formally, the proof is as follows. Let us define

Bp,q,S := Eω∼Λ

[
sup

z∈conv(S∆)

‖∇zf(z;ω)‖2

]
,

where f(z;ω) = ∂p,qk(z) − ωp(−ω)qh|p+q|
(
ωT z

)
. Let us notice that since conv(S∆) is compact (by the compactness of

S∆, implied by that of S) and z 7→ ‖∇zf(z;ω)‖2 is continuous, the supremum inside the expectation in Bp,q,S is finite for any
ω.

• Covering of S∆: By the compactness of S∆ there exist an r-net with at most

N =

(
2|S∆|
r

+ 1

)d
≤
(

4|S|
r

+ 1

)d
(B.17)

balls covering S∆ [10, Lemma 2.5, page 20], where we used that |S∆| ≤ 2|S|. Let us denote the centers of this r-net by
c1, . . . , cN .
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• Bounding f̄(b;ω1:m)− f̄(a;ω1:m), where a,b ∈ S∆; ω1:m = (ω1, . . . ,ωm) is fixed: Let

f̄(z;ω1:m) =
1

m

m∑
j=1

f(z;ωj) =
1

m

m∑
j=1

[
∂p,qk(z)− ωp

j (−ωj)qh|p+q|
(
ωTj z

)]
.

z 7→ f̄(z;ω1:m) is continuously differentiable since ψ is so. Thus by the mean value theorem ∃ t ∈ (0, 1) such that

f̄(b;ω1:m)− f̄(a;ω1:m) =
〈
∇zf̄(ta + (1− t)b;ω1:m),b− a

〉
.

Hence by the Cauchy-Bunyakovsky-Schwarz inequality, we get
|f̄(b;ω1:m)− f̄(a;ω1:m)| ≤

∥∥∇zf̄(ta + (1− t)b;ω1:m)
∥∥

2
‖b− a‖2 ≤ sup

z∈conv(S∆)

∥∥∇zf̄(z;ω1:m)
∥∥

2
‖b− a‖2

=: L(ω1:m) ‖b− a‖2 , (B.18)

where we used the compactness of conv(S∆) (implied by that of S∆) and the continuity of the z 7→
∥∥∇zf̄(z;ω1:m)

∥∥
2

mapping to guarantee that L(ω1:m) exists, and it is finite for any ω1:m.

• Bound on Eω1,...,ωm [L(ω1:m)]: Using the definition of f̄(z;ω1:m), the linearity of differentiation, and the triangle in-
equality, we get∥∥∇zf̄(z;ω1:m)

∥∥
2

=

∥∥∥∥∥∥∇z

 1

m

m∑
j=1

f(z;ωj)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

m

m∑
j=1

∇zf(z;ωj)

∥∥∥∥∥∥
2

≤ 1

m

m∑
j=1

‖∇zf(z;ωj)‖2 .

Therefore,

sup
z∈conv(S∆)

∥∥∇zf̄(z;ω1:m)
∥∥

2
≤ 1

m

m∑
j=1

sup
z∈conv(S∆)

‖∇zf(z;ωj)‖2

and

Eω1:m [L(ω1:m)] = Eω1:m

[
sup

z∈conv(S∆)

‖∇zf(z;ω1:m)‖2

]
≤ 1

m

m∑
j=1

Eω1:m

[
sup

z∈conv(S∆)

‖∇zf(z;ωj)‖2

]

=
1

m

m∑
j=1

Bp,q,S = Bp,q,S. (B.19)

• Bound on Bp,q,S: Note that

sup
z∈conv(S∆)

‖∇zf(z;ω)‖2 = sup
z∈conv(S∆)

∥∥∇z

[
∂p,qk(z)− ωp(−ω)qh|p+q|

(
ωT z

)]∥∥
2

≤ sup
z∈conv(S∆)

(
‖∇z [∂p,qk(z)]‖2 +

∥∥∇z

[
ωp(−ω)qh|p+q|

(
ωT z

)]∥∥
2

)
≤ sup

z∈conv(S∆)

‖∇z [∂p,qk(z)]‖2 + sup
z∈conv(S∆)

∥∥∇z

[
ωp(−ω)qh|p+q|

(
ωT z

)]∥∥
2

= Dp,q,S + sup
z∈conv(S∆)

∥∥∇z

[
ωp(−ω)qh|p+q|

(
ωT z

)]∥∥
2
. (B.20)

By the homogenity of norms (‖av‖ = |a| ‖v‖), the chain rule, and |ha(v)| ≤ 1 (∀a, ∀v)∥∥∇z

[
ωp(−ω)qh|p+q|

(
ωT z

)]∥∥
2

= |ωp+q|
∥∥h|p+q|+1

(
ωT z

)
ω
∥∥

2
≤ |ωp+q| ‖ω‖2 . (B.21)

Combining Eq. (B.20) and (B.21) results in the bound

Bp,q,S = Eω∼Λ

[
sup

z∈conv(S∆)

‖∇zf(z;ω)‖2

]
≤ Dp,q,S + Eω∼Λ

[
|ωp+q| ‖ω‖2

]
= Dp,q,S + Ep,q. (B.22)

• Error propagation from the net centers: We will use the following note to propagate the error from the net centers (cj ,
j = 1, . . . , N ) to an arbitrary z ∈ S∆ point. Note: If |f̄(cj ;ω1:m)| < ε

2 (∀j) and L(ω1:m) < ε
2r , then

|f̄(z;ω1:m)| < ε (∀z ∈ S∆). (B.23)
Indeed ∣∣|f̄(z;ω1:m)| − |f̄(cj ;ω1:m)|︸ ︷︷ ︸

< ε
2

∣∣ ≤ |f̄(z;ω1:m)− f̄(cj ;ω1:m)| ≤ L(ω1:m)︸ ︷︷ ︸
< ε

2r

‖z− cj‖2︸ ︷︷ ︸
≤r

<
ε

2
,

where we used (B.18) and our assumptions in the note, thereby yielding (B.23).
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• Guaranteeing the conditions of (B.23) with high probability:
– Notice that Eω∼Λ[f(z;ω)] = 0 (∀z). Also since (7) holds, applying Bernstein’s inequality for the individual cj points

(Lemma C.3; ξn := f(cj ;ωn), n = 1, . . . ,m; S :=
√
mσ) gives that for any η > 0

Λm
(
|f̄(cj ;ω1:m)| ≥ ησ√

m

)
≤ e
− 1

2
η2

1+
ηL√
mσ . (B.24)

Setting ε = 2ησ√
m

, (B.24) is written as

Λm
(
|f̄(cj ;ω1:m)| < ε

2

)
≥ 1− e

− 1
2

(√
mε
2σ

)2

1+

√
mε
2σ

L
√
mσ = 1− e

− mε2

8σ2(1+ εL
2σ2 ) .

By union bounding (j = 1, . . . , N ), we get

Λm
(
∩Nj=1

{
|f̄(cj ;ω1:m)| < ε

2

})
≥ 1−Ne

− mε2

8σ2(1+ εL
2σ2 ) . (B.25)

– Condition L(ω1:m) < ε
2r : Applying Markov’s inequality to L(ω1:m) (note that L(ω1:m) is non-negative), for any

t > 0, we obtain

Λm (L(ω1:m) ≥ t) ≤ Eω1,...,ωm [L(ω1:m)]

t
≤ Dp,q,S + Ep,q

t
,

by invoking (B.19) and (B.22). Choosing t = ε
2r , we have

Λm
(
L(ω1:m) <

ε

2r

)
≥ 1− 2r

ε
(Dp,q,S + Ep,q). (B.26)

• Final bound for any r > 0: By (B.25) and (B.26), and substituting the explicit form of N in (B.17), we get

Λm
(

sup
z∈S∆

|f̄(z;ω1:m)| < ε

)
≥ Λm

({
L(ω1:m) <

ε

2r

}⋂
∩Nj=1

{
|f̄(cj ;ω1:m)| < ε

2

})
≥ 1−

(
4|S|
r

+ 1

)d
e
− mε2

8σ2(1+ εL
2σ2 ) − 2r

ε
(Dp,q,S + Ep,q)

(†)
≥ 1− c∗ − κ1r

−d − κ2r,

(B.27)

where we invoked the(
4|S|
r

+ 1

)d
=

[
2

(
4|S|
r

2
+

1

2

)]d
= 2d

(
4|S|
r

2
+

1

2

)d
(†)
≤ 2d

1

2

[(
4|S|
r

)d
+ 1d

]
= 2d−1

[(
4|S|
r

)d
+ 1

]

Jensen’s inequality in (†), c∗ := 2d−1e
− mε2

8σ2(1+ εL
2σ2 ) , κ1 := 4d|S|dc∗ and κ2 = 2

ε (Dp,q,S + Ep,q).

• Matching the two terms to choose r: Maximizing w.r.t. r in (B.27)

f(r) = κ1r
−d + κ2r ⇒ f ′(r) = κ1(−d)r−d−1 + κ2 = 0⇒ dκ1

κ2
= rd+1

we note that r =
(
dκ1

κ2

) 1
d+1

maximizes it. Using this in (B.27), we have

Λm
(

sup
z∈S∆

|f̄(z;ω1:m)| ≥ ε
)
≤ c∗ + κ1

(
dκ1

κ2

)− d
d+1

+ κ2

(
dκ1

κ2

) 1
d+1

= c∗ + Fdκ
1
d+1

1 κ
d
d+1

2

= 2d−1e
− mε2

8σ2(1+ εL
2σ2 ) + Fd

[
23d−1|S|de

− mε2

8σ2(1+ εL
2σ2 )

] 1
d+1 [

2

ε
(Dp,q,S + Ep,q)

] d
d+1

= 2d−1e
− mε2

8σ2(1+ εL
2σ2 ) + Fd2

4d−1
d+1

[
|S|(Dp,q,S + Ep,q)

ε

] d
d+1

e
− mε2

8(d+1)σ2(1+ εL
2σ2 ) ,

where Fd := d−
d
d+1 + d

1
d+1 .
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B.4 Proof of bounded supp(Λ)⇒ (7)

We prove that the boundedness of supp(Λ) implies that of f [see (B.28)], specifically (7).

Proof : Indeed, let

f(z;ω) = ∂p,qk(z)− ωp(−ω)qh|p+q|
(
ωT z

)
=

[∫
Rd

ωp(−ω)qh|p+q|
(
ωT z

)
dΛ(ω)

]
− ωp(−ω)qh|p+q|

(
ωT z

)
. (B.28)

Applying the triangle inequality and |ha(v)| ≤ 1 (∀a,∀v) we have

|f(z;ω)| ≤
∣∣∣∣∫

Rd
sp(−s)qh|p+q|

(
sT z

)
dΛ(s)

∣∣∣∣+
∣∣ωp(−ω)qh|p+q|

(
ωT z

)∣∣ ≤ ∫
Rd

∣∣sp(−s)qh|p+q|
(
sT z

)∣∣dΛ(s) +
∣∣ωp+q

∣∣
≤
∫
Rd

∣∣sp+q
∣∣dΛ(s) +

∣∣ωp+q
∣∣ =

∫
supp(Λ)

∣∣sp+q
∣∣ dΛ(s) +

∣∣ωp+q
∣∣ ≤ 2 sup

s∈supp(Λ)

|sp+q|.

K := sups∈supp(Λ) |sp+q| is finite since supp(Λ) is bounded, thus |f(z;ω)| is bounded.

C Supplementary results

In this section, we present some technical results that are used in the proofs.

Lemma C.1 (McDiarmid Inequality [7]). Let (Xi)
m
i=1 be X -valued independent random variables. Suppose f : Xm → R

satisfies the bounded difference property,
sup

u1,...,um,u′r∈X
|f(u1, . . . , um)− f(u1, . . . , ur−1, u

′
r, ur+1, . . . , um)| ≤ cr (∀r = 1, . . . ,m). (C.1)

Then for any ε > 0,

P (f(X1, . . . , Xm)− E [f(X1, . . . , Xm)] ≥ ε) ≤ e
− 2ε2∑m

r=1 c
2
r .

Note: specifically, if c = cr (∀r) then applying a τ = 2ε2∑m
r=1 c

2
r

= 2ε2

mc2 ⇔ ε = c
√

τm
2 reparameterization one gets

P
(
f(X1, . . . , Xm) < E [f(X1, . . . , Xm)] + c

√
τm
2

)
≥ 1− e−τ .

Lemma C.2. For a > 1,
∫ 1

0

√
log a

ε dε ≤
√

log a+ 1
2
√

log a
.

Proof. By change of variables, we have
∫ 1

0

√
log a

ε dε = a
∫∞

log a

√
te−t dt. Applying partial integration, we have∫ ∞

log a

√
te−t dt = [

√
te−t]log a

∞ +

∫ ∞
log a

1

2
√
t
e−t dt ≤

√
log a

a
+

1

2
√

log a

∫ ∞
log a

e−t dt =

√
log a

a
+

1

2a
√

log a
,

thereby yields the result.

Lemma C.3 (Bernstein inequality [12]). Let ξ ∈ R be a random variable, Eξ∼P[ξ] = 0, and assume that ∃L > 0, S > 0
satisfying

m∑
j=1

Eξj∼P
[
|ξj |M

]
≤ M !S2LM−2

2
(∀M ≥ 2),

where (ξj)
m
j=1

i.i.d.∼ P. Then for any 0 < m ∈ N, η > 0,

Pm
∣∣∣∣∣∣

m∑
j=1

ξj

∣∣∣∣∣∣ ≥ ηS
 ≤ e− 1

2
η2

1+
ηL
S .

Lemma C.4 (Lr norm as countable supremum). Assume that 1 < r̃ < ∞. If (X,A, µ), µ(X) < ∞, 1
r + 1

r̃ = 1, then[
Lr̃(X,A, µ)

]∗
= {Ff : f ∈ Lr(X,A, µ)}, where Ff (u) =

∫
X
ufdµ, and ‖f‖Lr = ‖Ff‖ (= sup‖g‖Lr̃=1 |Ff (g)|); see [8,

Theorem 4.1]. Specifically, if X = S ⊆ Rd compact and it is endowed with the Borel σ-algebra, then by the separability of S,
Lr̃(S) is also separable [4, Prop. 3.4.5] since the Borel σ-algebra is countably generated [1, page 17 (vol. 2)], thus there exists
a countable G ⊆ Lr̃(S), [3, Lemma 6.7] such that ‖g‖Lr̃(S) = 1 (∀g ∈ G) and ‖Ff‖ = supg∈G |Ff (g)|.
Note: the σ-algebra of Lebesgue measurable sets is typically not countably generated [1, page 106 (vol. I)].
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