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Abstract

Maximum Mean Discrepancy (MMD) is a distance on the space of probability
measures which has found numerous applications in machine learning and nonpara-
metric testing. This distance is based on the notion of embedding probabilities in a
reproducing kernel Hilbert space. In this paper, we present the first known lower
bounds for the estimation of MMD based on finite samples. Our lower bounds
hold for any radial universal kernel on Rd and match the existing upper bounds up
to constants that depend only on the properties of the kernel. Using these lower
bounds, we establish the minimax rate optimality of the empirical estimator and its
U -statistic variant, which are usually employed in applications.

1 Introduction

Over the past decade, the notion of embedding probability measures in a Reproducing Kernel
Hilbert Space (RKHS) [1, 13, 18, 17] has gained a lot of attention in machine learning, owing to
its wide applicability. Some popular applications of RKHS embedding of probabilities include two-
sample testing [5, 6], independence [7] and conditional independence testing [3], feature selection
[14], covariate-shift [13], causal discovery [9], density estimation [15], kernel Bayes’ rule [4],
and distribution regression [20]. This notion of embedding probability measures can be seen as a
generalization of classical kernel methods which deal with embedding points of an input space as
elements in an RKHS. Formally, given a probability measure P and a continuous positive definite
real-valued kernel k (we denoteH to be the corresponding RKHS) defined on a separable topological
space X , P is embedded into H as µP :=

∫
k(·, x) dP (x), called the mean element or the kernel

mean assuming k and P satisfy
∫
X

√
k(x, x) dP (x) <∞. Based on the above embedding of P , [5]

defined a distance—called the Maximum Mean Discrepancy (MMD)—on the space of probability
measures as the distance between the corresponding mean elements, i.e.,

MMDk(P,Q) = ‖µP − µQ‖H .
We refer the reader to [18, 17] for a detailed study on the properties of MMD and its relation to other
distances on probabilities.

Estimation of kernel mean. In all the above mentioned applications, since the only knowledge of
the underlying distribution is through random samples drawn from it, an estimate of µP is employed
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in practice. In applications such as two-sample test [5, 6] and independence test [7] that involve
MMD, an estimate of MMD is constructed based on the estimates of µP and µQ respectively. The
simple and most popular estimator of µP is the empirical estimator, µPn := 1

n

∑n
i=1 k(·, Xi) which

is a Monte Carlo approximation of µP based on random samples (Xi)
n
i=1 drawn i.i.d. from P .

Recently, [10] proposed a shrinkage estimator of µP based on the idea of James-Stein shrinkage,
which is demonstrated to empirically outperform µPn . While both these estimators are shown to
be
√
n-consistent [13, 5, 10], it was not clear until the recent work of [21] whether any of these

estimators are minimax rate optimal, i.e., is there an estimator of µP that yields a convergence rate
faster than n−1/2? Based on the minimax optimality of the sample mean (i.e., X := 1

n

∑n
i=1Xi) for

the estimation of a finite dimensional mean of a normal distribution at a minimax rate of n−1/2 [8,
Chapter 5, Example 1.14], while one can intuitively argue that the empirical and shrinkage estimators
of µP are minimax rate optimal, it is difficult to extend the finite dimensional argument in a rigorous
manner to the estimation of the infinite dimensional object, µP . Note thatH is infinite dimensional
if k is universal [19, Chapter 4], e.g., Gaussian kernel. By establishing a remarkable relation between
the MMD of two Gaussian distributions and the Euclidean distance between their means for any
bounded continuous translation invariant universal kernel on X = Rd, [21] rigorously showed that
the estimation of µP is only as hard as the estimation of the finite dimensional mean of a normal
distribution and thereby established the minimax rate of estimating µP to be n−1/2. This in turn
demonstrates the minimax rate optimality of empirical and shrinkage estimators of µP .

Estimation of MMD. In this paper, we are interested in the minimax optimal estimation of
MMDk(P,Q). The question of finding optimal estimators of MMD is of interest in applications such
as kernel-based two-sample [5] and independence tests [7] as the test statistic is indeed an estimate of
MMD and it is important to use statistically optimal estimators in the construction of these kernel
based tests. An estimator of MMD that is currently employed in these applications is based on the
empirical estimators of µP and µQ, i.e.,

MMDn,m := ‖µPn − µQm‖H,

which is constructed from samples (Xi)
n
i=1

i.i.d.∼ P and (Yi)
m
i=1

i.i.d.∼ Q. [5, 7] also considered a
U -statistic variant of MMDn,m as a test statistic in these applications. As discussed above, while µPn
and µQm are minimax rate optimal estimators of µP and µQ respectively, they need not guarantee
that MMDn,m is minimax rate optimal. Using the fact that ‖µPn − µP ‖H = Op(n

−1/2) and

|MMDk(P,Q)−MMDn,m| ≤ ‖µP − µPn‖H + ‖µQm − µQ‖H,

it is easy to see that

|MMDk(P,Q)−MMDn,m| = Op(n
−1/2 +m−1/2). (1)

In fact, if k is a bounded kernel, it can be shown that the constants (which are hidden in the order
notation in (1)) depend only on the bound on the kernel and are independent of X , P and Q. The
goal of this work is to find the minimax rate rn,m,k(P) and a positive constant ck(P) (independent
of m and n) such that

inf
F̂n,m

sup
P,Q∈P

Pn ×Qm
{
r−1
n,m,k(P) |F̂n,m −MMDk(P,Q)| ≥ ck(P)

}
> 0, (2)

where P is a suitable subset of Borel probability measures on X , the infimum is taken over all
estimators F̂n,m mapping the i.i.d. sample {(Xi)

n
i=1, (Yi)

m
i=1} to R+, and Pn × Qm denotes the

probability measure associated with the sample when (Xi)
n
i=1

i.i.d.∼ P and (Yi)
m
i=1

i.i.d.∼ Q. In addition
to the rate, we are also interested in the behavior of ck(P) in terms of its dependence on k, X and P .

Contributions. The main contribution of the paper is in establishing m−1/2 + n−1/2, i.e.,
rn,m,k(P) =

√
(m+ n)/mn as the minimax rate for estimating MMDk(P,Q) when k is a ra-

dial universal kernel (examples include the Gaussian, Matérn and inverse multiquadric kernels) on Rd
and P is the set of all Borel probability measures on Rd with infinitely differentiable densities. This
result guarantees that MMDn,m and its U -statistic variant are minimax rate optimal estimators of
MMDk(P,Q), which thereby ensures the minimax optimality of the test statistics used in kernel
two-sample and independence tests. We would like to highlight the fact that our result of the minimax
lower bound on MMDk(P,Q) implies part of the results of [21] related to the minimax estimation
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of µP , as it can be seen that any ε-accurate estimators µ̂P and µ̂Q of µP and µQ respectively in the
RKHS norm lead to the 2ε-accurate estimator F̂n,m := ‖µ̂P − µ̂Q‖H of MMDk(P,Q), i.e.,

ck(P)(n−1/2 +m−1/2) ≤ |MMDk(P,Q)− F̂n,m| ≤ ‖µP − µ̂P ‖H + ‖µQ − µ̂Q‖H.

In Section 2, we present the main results of our work wherein Theorem 1 is developed by employing
the ideas of [21] involving Le Cam’s method (see Theorem 3) [22, Sections 2.3 and 2.6]. However,
we show that while the minimax rate is m−1/2 + n−1/2, there is a sub-optimal dependence on d in
the constant ck(P) which makes the result uninteresting in high dimensional scenarios. To alleviate
this issue, we present a refined result in Theorem 2 based on the method of two fuzzy hypotheses (see
Theorem 4) [22, Section 2.7.4] which shows that ck(P) in (2) is independent of d (i.e., X ). This result
provides a sharp lower bound for MMD estimation both in terms of the rate and the constant (which
is independent of X ) that matches with behavior of the upper bound for MMDn,m. The proofs of
these results are provided in Section 3 while supplementary results are collected in an appendix.

Notation. In this work we focus on radial kernels, i.e., k(x, y) = ψ(‖x− y‖2) for all x, y ∈ Rd.
Schoenberg’s theorem [12] states that a radial kernel k is positive definite for every d if and only if
there exists a non-negative finite Borel measure ν on [0,∞) such that

k(x, y) =

∫ ∞
0

e−t‖x−y‖
2

dν(t) (3)

for all x, y ∈ Rd. An important example of a radial kernel is the Gaussian kernel k(x, y) =
exp{−‖x− y‖2/(2η2)} for η2 > 0. [17, Proposition 5] showed that k in (3) is universal if and only
if supp(ν) 6= {0}, where for a finite non-negative Borel measure µ on Rd we define supp(µ) =
{x ∈ Rd | if x ∈ U and U is open then µ(U) > 0}.

2 Main results

In this section, we present the main results of our work wherein we develop minimax lower bounds for
the estimation of MMDk(P,Q) when k is a radial universal kernel on Rd. We show that the minimax
rate for estimating MMDk(P,Q) based on random samples (Xi)

n
i=1

i.i.d.∼ P and (Yi)
m
i=1

i.i.d.∼ Q is
m−1/2+n−1/2, thereby establishing the minimax rate optimality of the empirical estimator MMDn,m

of MMD(P,Q). First, we present the following result (proved in Section 3.1) for Gaussian kernels,
which is based on an argument similar to the one used in [21] to obtain a minimax lower bound for
the estimation of µP .
Theorem 1. Let P be the set of all Borel probability measures over Rd with continuously infinitely
differentiable densities. Let k be a Gaussian kernel with bandwidth parameter η2 > 0. Then the
following holds:

inf
F̂n,m

sup
P,Q∈P

Pn ×Qm
{∣∣∣MMDk(P,Q)− F̂n,m

∣∣∣ ≥ 1

8

√
1

d+ 1
max

{
1√
n
,

1√
m

}}
≥ 1

5
. (4)

The following remarks can be made about Theorem 1.
(a) Theorem 1 shows that MMDk(P,Q) cannot be estimated at a rate faster than max{n−1/2,m−1/2}
by any estimator F̂n,m for all P,Q ∈ P . Since max{m−1/2, n−1/2} ≥ 1

2 (m−1/2 + n−1/2), the
result combined with (1) therefore establishes the minimax rate optimality of the empirical estimator,
MMDn,m.

(b) While Theorem 1 shows the right order of dependence on m and n, the dependence on d seems
to be sub-optimal as the upper bound on |MMDn,m −MMDk(P,Q)| depends only on the bound
on the kernel and is independent of d. This sub-optimal dependence on d may be due to the fact the
proof of Theorem 1 (see Section 3.1) as aforementioned is closely based on the arguments applied
in [21] for the minimax estimation of µP . While the lower bounding technique used in [21]—which
is commonly known as Le Cam’s method based on many hypotheses [22, Chapter 2]—provides
optimal results in the problem of estimation of functions (e.g., estimation of µP in the norm ofH), it
often fails to do so in the case of estimation of real-valued functionals, which is precisely the focus of
our work. Even though Theorem 1 is sub-optimal, we presented the result to highlight the fact that
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the minimax lower bounds for estimation of µP may not yield optimal results for MMDk(P,Q). In
Theorem 2, we will develop a new argument based on two fuzzy hypotheses, which is a method of
choice for nonparametric estimation of functionals [22, Section 2.7.4]. This will allow us to get rid of
the superfluous dependence on the dimensionality d in the lower bound.

(c) While Theorem 1 holds for only Gaussian kernels, we would like to mention that by using
the analysis of [21], Theorem 1 can be straightforwardly improved in various ways: (i) it can be
generalized to hold for a wide class of radial universal kernels, (ii) the factor d−1/2 in (4) can be
removed altogether for the case when P consists of all Borel discrete distributions on Rd. However,
these improvements do not involve any novel ideas than those captured by the proof of Theorem 1
and so will not be discussed in this work. For details, we refer an interested reader to Theorems 2
and 6 of [21] for extension to radial universal kernels and discrete measures, respectively.

(d) Finally, it is worth mentioning that any lower bound on the minimax probability (including the
bounds of Theorems 1 and 2) leads to a lower bound on the minimax risk, which is based on a simple
application of the Markov’s inequality: EPn×Qm

[
s−1
n,m · |An,m|

]
≥ Pn ×Qm{|An,m| ≥ sn,m}.

The following result (proved in Section 3.2) is the main contribution of this work. It provides a
minimax lower bound for the problem of MMD estimation, which holds for general radial universal
kernels. In contrast to Theorem 1, it avoids the superfluous dependence on d and depends only on the
properties of k while exhibiting the correct rate.
Theorem 2. Let P be the set of all Borel probability measures over Rd with continuously infinitely
differentiable densities. Let k be a radial kernel on Rd of the form (3), where ν is a bounded non-
negative measure on [0,∞). Assume that there exist 0 < t0 ≤ t1 < ∞ and 0 < β < ∞ such that
ν([t0, t1]) ≥ β. Then the following holds:

inf
F̂n,m

sup
P,Q∈P

Pn ×Qm
{∣∣∣MMDk(P,Q)− F̂n,m

∣∣∣ ≥ 1

20

√
βt0
t1e

max

{
1√
n
,

1√
m

}}
≥ 1

14
. (5)

Note that the existence of 0 < t0 ≤ t1 <∞ and 0 < β <∞ such that ν([t0, t1]) ≥ β ensures that
supp(ν) 6= {0} (i.e., the kernel is not a constant function), which implies k is universal. If k is a
Gaussian kernel with bandwidth parameter η2 > 0, it is easy to verify that t0 = t1 = (2η2)−1 and
β = 1 satisfy ν([t0, t1]) ≥ β as the Gaussian kernel is generated by ν = δ1/(2η2) in (3), where δx is
a Dirac measure supported at x. Therefore we obtain a dimension independent constant in (5) for
Gaussian kernels compared to the bound in (4).

3 Proofs

In this section, we present the proofs of Theorems 1 and 2. Before we present the proofs, we first
introduce the setting of nonparametric estimation. Let F : Θ → R be a functional defined on a
measurable space Θ and PΘ = {Pθ : θ ∈ Θ} be a family of probability distributions indexed by Θ
and defined over a measurable space X associated with data. We observe the data D ∈ X distributed
according to an unknown element Pθ ∈ PΘ and the goal is to estimate F (θ). Usually X , D, and Pθ
will depend on sample size n. Let F̂n := F̂n(D) be an estimator of F (θ) based on D. The following
well known result [22, Theorem 2.2] provides a lower bound on the minimax probability of this
problem. We refer the reader to Appendix A for a proof of its more general version.
Theorem 3. Assume there exist θ0, θ1 ∈ Θ such that |F (θ0) − F (θ1)| ≥ 2s > 0 and
KL(Pθ1‖Pθ0) ≤ α with 0 < α <∞. Then

inf
F̂n

sup
θ∈Θ

Pθ

{
|F̂n(D)− F (θ)| ≥ s

}
≥ max

(
1

4
e−α,

1−
√
α/2

2

)
,

where KL(Pθ1‖Pθ0) :=
∫

log
(
dPθ1
dPθ0

)
dPθ1 denotes the Kullback-Leibler divergence between Pθ1

and Pθ0 .

The above result (also called the Le Cam’s method) provides the recipe for obtaining minimax lower
bounds, where the goal is to construct two hypotheses θ0, θ1 ∈ Θ such that (i) F (θ0) and F (θ1) are
far apart, while (ii) the corresponding distributions, Pθ0 and Pθ1 are close enough. The requirement
(i) can be relaxed by introducing two random (fuzzy) hypotheses θ0, θ1 ∈ Θ, and requiring F (θ0)
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and F (θ1) to be far apart with high probability. This weaker requirement leads to a lower bounding
technique, called the method of two fuzzy hypotheses. This method is captured by the following
theorem [22, Theorem 2.14] and is commonly used to derive lower bounds on the minimax risk in
the problem of estimation of functionals [22, Section 2.7.4].
Theorem 4. Let µ0 and µ1 be any probability distributions over Θ. Assume that

1. There exist c ∈ R, s > 0, 0 ≤ β0, β1 < 1 such that µ0

(
θ : F (θ) ≤ c

)
≥ 1 − β0 and

µ1

(
θ : F (θ) ≥ c+ 2s

)
≥ 1− β1.

2. There exist τ > 0 and 0 < α < 1 such that P1

(
dPa0
dP1
≥ τ

)
≥ 1− α, where

Pi(D) =

∫
Pθ(D)µi(dθ), i ∈ {0, 1}

and Pa0 is the absolutely continuous component of P0 with respect to P1.

Then

inf
F̂n

sup
θ∈Θ

Pθ

{
|F̂n(D)− F (θ)| ≥ s

}
≥ τ(1− α− β1)− β0

1 + τ
.

With this set up and background, we are ready to prove Theorems 1 and 2.

3.1 Proof of Theorem 1

The proof is based on Theorem 3 and treats two cases m ≥ n and m < n separately. We consider
only the case m ≥ n as the second one follows the same steps. Let Gd denote a class of multivariate
Gaussian distributions over Rd with covariance matrices proportional to identity matrix Id ∈ Rd×d.
In our case Gd ⊆ P , which leads to the following lower bound for any s > 0:

sup
P,Q∈P

Pn×Qm
{∣∣∣MMDk(P,Q)− F̂n,m

∣∣∣ ≥ s} ≥ sup
P,Q∈Gd

Pn×Qm
{∣∣∣MMDk(P,Q)− F̂n,m

∣∣∣ ≥ s} .
Note that every element G(µ, σ2Id) ∈ Gd is indexed by a pair (µ, σ2) ∈ Rd × (0,∞) =: Θ̃. Given
two elements P,Q ∈ Gd, the data is distributed according to Pn × Qm. This brings us into the
context of Theorem 3 with Θ := Θ̃× Θ̃, X := (Rd)n+m, Pθ := Gn1 ×Gm2 for θ = (θ̃1, θ̃2) ∈ Θ

with Gaussian distributions G1 and G2 corresponding to parameters θ̃1, θ̃2 ∈ Θ̃ respectively, and
F (θ) = MMDk(G1, G2).

In order to apply Theorem 3 we need to choose two probability distributions Pθ0 and Pθ1 . We define
four different d-dimensional Gaussian distributions:

P0 = G(µP0 , σ
2Id), Q0 = G(µQ0 , σ

2Id), P1 = Q1 = G(0, σ2Id)

with

σ2 =
c1η

2

d

(
2 +

n

m

)
, ‖µP0 ‖2 =

c2η
2

d

(
1

n
+

1

m

)
, ‖µQ0 ‖2 =

c2η
2

dm
, ‖µP0 − µ

Q
0 ‖2 =

c3η
2

dn
,

where c1, c2, c3 > 0 are positive constants independent of m and n to be specified later. Note that

this construction is possible as long as
√

c3
n ≤

√
c2
(

1
n + 1

m

)
+
√

c2
m , which is clearly satisfied if

c3 ≤ c2.
First we will check the upper bound on the KL divergence between the distributions. Using the chain
rule of KL divergence and its closed form expression for Gaussian distributions we write

KL(Pn1 ×Qm1 ‖Pn0 ×Qm0 ) = n · ‖µ
P
0 ‖2

2σ2
+m · ‖µ

Q
0 ‖2

2σ2
= n ·

c2η
2
(

1
n + 1

m

)
2c1η2

(
2 + n

m

) +m ·
c2η

2 1
m

2c1η2
(
2 + n

m

)
= c2

2 + n
m

2c1
(
2 + n

m

) =
c2
2c1

.

Next we need to lower bound an absolute value between MMDk(P0, Q0) and MMDk(P1, Q1). Note
that

|MMDk(P0, Q0)−MMDk(P1, Q1)| = MMDk(P0, Q0). (6)
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Using a closed-form expression for the MMD between Gaussian distribution [21, Eq. 25] we write

MMD2
k(P0, Q0) = 2

(
η2

η2 + 2σ2

)d/2(
1− exp

(
−‖µ

P
0 − µ

Q
0 ‖2

2η2 + 4σ2

))
.

Assume
‖µP0 − µ

Q
0 ‖2

2η2 + 4σ2
≤ 1. (7)

Using 1− e−x ≥ x/2, which holds for x ∈ [0, 1], we write

|MMDk(P0, Q0)−MMDk(P1, Q1)| ≥

(
d

d+ 2c1
(
2 + n

m

))d/4√‖µP0 − µQ0 ‖2
2η2 + 4σ2

.

Since m ≥ n and (1− 1
x )x−1 monotonically decreases to e−1 for x ≥ 1, we have(

d

d+ 2c1
(
2 + n

m

))d4 ≥ ( d

d+ 6c1

)d
4

=

((
1− 1

1 + d/(6c1)

)(1+d/(6c1)−1)
) 6c1

d ·
d
4

≥ e−
3c1
2 .

Using this and setting c3 = c2 we get

|MMDk(P0, Q0)−MMDk(P1, Q1)| ≥ 1√
n
e−

3c1
2

√
c2

2d+ 4c1
(
2 + n

m

) ≥ 1√
n
e−

3c1
2

√
c2

2d+ 12c1
.

Now we set c1 = 0.16, c2 = 0.23. Checking that Condition (7) is satisfied and noting that

max

(
1

4
e−

c2
2c1 ,

1−
√
c2/(4c1)

2

)
>

1

5
,

1

2
e−

3c1
2

√
c2
2
>

1

8
and

1

d+ 6c1
>

1

d+ 1

we conclude the proof with an application of Theorem 3.

3.2 Proof of Theorem 2

First, we repeat the argument presented in the proof of Theorem 1 to bring ourselves into the context
of minimax estimation, introduced in the beginning of Section 3.1. Namely, we reduce the class of
distributions P to its subset Gd containing all the multivariate Gaussian distributions over Rd with
covariance matrices proportional to identity matrix Id ∈ Rd×d. The proof is based on Theorem 4 and
treats two cases m ≥ n and m < n separately. We consider only the case m ≥ n as the second one
follows the same steps.

In order to apply Theorem 4 we need to choose two “fuzzy hypotheses”, that is two probability
distributions µ0 and µ1 over Θ. In our setting there is a one-to-one correspondence between
parameters θ ∈ Θ and pairs of Gaussian distributions (G1, G2) ∈ Gd × Gd. Throughout the proof it
will be more convenient to treat µ0 and µ1 as distributions over Gd ×Gd. We will set µ0 to be a Dirac
measure supported on (P0, Q0) with P0 = Q0 = G(0, σ2Id). Clearly, MMDk(P0, Q0) = 0. This
gives

µ0

(
θ : F (θ) = 0

)
= 1

and the first inequality of Condition 1 in Theorem 4 holds with c = 0 and β0 = 0. Next we set µ1 to
be a distribution of a random pair (P,Q) with

Q = Gd(0, σ
2Id), P = Gd(µ, σ

2Id), σ2 =
1

2t1d
,

where µ ∼ Pµ for some probability distribution Pµ over Rd to be specified later. Next we are going to
check Condition 2 of Theorem 4. For D = (x1, . . . , xn, y1, . . . , ym) define “posterior” distributions

Pi(D) =

∫
Pθ(D)µi(dθ), i ∈ {0, 1}

as in Theorem 4. Using Markov’s inequality we write

P1

(
dP0

dP1
< τ

)
= P1

(
dP1

dP0
> τ−1

)
≤ τE1

[
dP1

dP0

]
. (8)
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We have

dP1

dP0
(D) =

∫
Rd
∏n
j=1 e

−
‖xj−µ‖

2

2σ2
∏m
k=1 e

− ‖yk‖
2

2σ2 dPµ(µ)∏n
j=1 e

−
‖xj‖2

2σ2
∏m
k=1 e

− ‖yk‖
2

2σ2

=

∫
Rd
e−

n‖µ‖2

2σ2 e
〈
∑n
j=1 xj,µ〉

σ2 dPµ(µ).

Now we compute the expected value appearing in (8):

ED∼P1

[
dP1

dP0
(D)

]
=

∫
Rd
e−

n‖µ‖2

2σ2 ED∼P1

[
e〈

∑n
j=1 xj , µ〉/σ2

]
dPµ(µ)

=

∫
Rd
e−

n‖µ‖2

2σ2

(∫
Rd

E
[
e

1
σ2

〈∑n
j=1X

µ′
j , µ

〉]
dPµ(µ′)

)
dPµ(µ), (9)

where Xµ′

1 , . . . , Xµ′

n are independent and distributed according to Gd(µ
′, σ2Id). Note that∑n

j=1X
µ′

j ∼ Gd(nµ
′, nσ2Id) and as a result

〈∑n
j=1X

µ′

j , µ
〉
∼ G

(
n〈µ′, µ〉, nσ2‖µ‖2

)
. Using

the closed form for the moment generating function of a Gaussian distribution Z ∼ G(µ, σ2),
E
[
etZ
]

= eµte
1
2σ

2t2 , we get

E
[
e

1
σ2

〈∑n
j=1X

µ′
j , µ

〉]
= e

n〈µ′,µ〉
σ2 e

n‖µ‖2

2σ2 .

Together with (9) this gives

ED∼P1

[
dP1

dP0
(D)

]
=

∫
Rd
e−

n‖µ‖2

2σ2

(∫
Rd
e
n〈µ′,µ〉
σ2 e

n‖µ‖2

2σ2 dPµ(µ′)

)
dPµ(µ) = E

[
e
n〈µ′,µ〉
σ2

]
, (10)

where µ and µ′ are independent random variables both distributed according to Pµ. Now we set Pµ
to be a uniform distribution in the d-dimensional cube of appropriate size

Pµ := U
[
−c1/

√
dnt1, c1/

√
dnt1

]d
.

In this case, using Lemma B.1 presented in Appendix B we get

E
[
e
n〈µ′,µ〉
σ2

]
=

d∏
i=1

E
[
e
nµiµ

′
i

σ2

]
=

d∏
i=1

dnσ2t1
2nc21

Shi

(
n

σ2

c21
dnt1

)
=

(
1

4c21
Shi
(
2c21
))d

.

Using (10) and also assuming
1

4c21
Shi
(
2c21
)
≤ 1 (11)

we get

ED∼P1

[
dP1

dP0
(D)

]
≤ 1

4c21
Shi
(
2c21
)
.

Combining with (8) we finally get P1

(
dP0

dP1
< τ

)
≤ τ

4c21
Shi
(
2c21
)

or equivalently P1

(
dP0

dP1
≥ τ

)
≥

1− τ
4c21

Shi
(
2c21
)
. This shows that Condition 2 of Theorem 4 is satisfied with α = τ

4c21
Shi
(
2c21
)
.

Finally, we need to check the second inequality of Condition 1 in Theorem 4. Take two Gaussian
distributions P = Gd(µ, σ

2Id) and Q = Gd(0, σ
2Id). Using [21, Eq. 30] we have

MMD2
k(P,Q) ≥ βt0

e

(
1− 2

2 + d

)
‖µ‖2

given

σ2 =
1

2t1d
and t1‖µ‖2 ≤ 1 + 4t1σ

2. (12)

Notice that the largest diagonal of a d-dimensional cube scales as
√
d. Using this we conclude that

for µ ∼ Pµ with probability 1 it holds that ‖µ‖2 ≤ c21
t1n

and the second condition in (12) holds as
long as c21 ≤ n. Using this we get for any c2 > 0

P
(P,Q)∼µ1

{
MMDk(P,Q) ≥ c2

√
βt0
t1en

}
≥ P
µ∼Pµ

{
‖µ‖2 ≥ c22

t1n

(
2 + d

d

)}
. (13)
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Note that for µ ∼ Pµ, ‖µ‖2 =
∑d
i=1 µ

2
i is a sum of d i.i.d. bounded random variables. Also simple

computations show that

E‖µ‖2 =

d∑
i=1

Eµ2
i = d

c21
3dnt1

=
c21

3nt1
and V‖µ‖2 =

d∑
i=1

Vµ2
i =

4c41
45dn2t21

.

Using Chebyshev-Cantelli’s inequality of Theorem B.2 (Appendix B) we get for any ε > 0

P
µ∼Pµ

{
‖µ‖2 ≥ E‖µ‖2 − ε

}
= 1− P

µ∼Pµ

{
−‖µ‖2 > −E‖µ‖2 + ε

}
≥ 1− 1

1 +
45dn2t21

4c41
ε2

or equivalently for any ε > 0,

P
µ∼Pµ

{
‖µ‖2 ≥ c21

(
1

3
− 2ε

3
√

5d

)
1

nt1

}
≥ 1− 1

1 + ε2
.

Choosing ε ≤
√

5
2 −

9
√

5
2

(
c2
c1

)2

, we can further lower bound (13):

P
(P,Q)∼µ1

{
MMDk(P,Q) ≥ c2

√
βt0
t1en

}
≥ P
µ∼Pµ

{
‖µ‖2 ≥ c21

(
1

3
− 2ε

3
√

5d

)
1

nt1

}
≥ 1− 1

1 + ε2
.

We finally set τ = 0.4, c1 = 0.8, c2 = 0.1, ε =
√

5
2 −

9
√

5
2

(
c2
c1

)2

, and check that inequality (11)
and the second condition of (12) are satisfied, while

τ
(

1− τ
4c21

Shi
(
2c21
)
− 1

1+ε2

)
1 + τ

>
1

14
.

We complete the proof by application of Theorem 4.

4 Discussion

In this paper, we provided the first known lower bounds for the estimation of maximum mean
discrepancy (MMD) based on finite random samples. Based on this result, we established the minimax
rate optimality of the empirical estimator. Interestingly, we showed that for radial kernels on Rd, the
optimal speed of convergence depends only on the properties of the kernel and is independent of d.
However, the paper does not address an important question about the minimax rates for MMD based
tests. We believe that the minimax rates of testing with MMD matches with that of the minimax rates
for MMD estimation and we intend to build on this work in future to establish minimax testing results
involving MMD.

Since MMD is an integral probability metric (IPM) [11], a related problem of interest is the minimax
estimation of IPMs. IPM is a class of distances on probability measures, which is defined as
γ(P,Q) := sup{

∫
f(x) d(P − Q)(x) : f ∈ F}, where F is a class of bounded measurable

functions on a topological space X with P and Q being Borel probability measures. It is well known
[16] that the choice of F = {f ∈ H : ‖f‖H ≤ 1} yields MMDk(P,Q) where H is a reproducing
kernel Hilbert space with a bounded reproducing kernel k. [16] studied the empirical estimation
of γ(P,Q) for various choices of F and established the consistency and convergence rates for the
empirical estimator. However, it remains an open question as to whether these rates are minimax
optimal.
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A Minimax lower bounds: Method based on many hypotheses

In Section 3 we already introduced the setting of a nonparametric estimation of a functional and
presented a lower bounding method involving two hypotheses (see Theorem 3). In this appendix, we
present a more general result along with a sketch of its proof for obtaining minimax lower bounds
using many hypotheses (i.e., more than two).

The setting introduced in Section 3 is slightly different from the one introduced in Section 2.1
of [22] and studied throughout the book. In short, a standard estimation problem considered in
nonparametric statistics deals with estimation of a function θ (for instance, a probability density
function underlining Pθ) in certain metric spaces, such as L2([0, 1]) or L2(Rd). Meanwhile, our work
deals with estimation of a real valued parameter F (θ) ∈ R (i.e., MMD between two distributions), or
in other words an estimation of a functional. Results summarized in this section are presented in [22]
in the former context of function estimation. For this reason we present them with a short sketch of
proof. The following result is a particular instance of [22, Theorem 2.5].

Theorem A.1 (Lower bound based on many hypotheses). Assume M ≥ 2 and suppose that there
exist θ0, . . . , θM ∈ Θ such that (i) |F (θi) − F (θj)| ≥ 2s > 0 for all 0 ≤ i < j ≤ M ; (ii) Pθi is
absolutely continuous w.r.t. Pθ0 for all i = 1, . . . ,M , and 1

M

∑M
i=1 KL(Pθi‖Pθ0) ≤ α logM with

0 < α ≤ 1/8. Then

inf
F̂n

sup
θ∈Θ

P
D∼Pθ

{
|F̂n(D)− F (θ)| ≥ s

}
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
> 0.

Proof. First, it is clear that

inf
F̂n

sup
θ∈Θ

P
D∼Pθ

{
|F̂n(D)− F (θ)| ≥ s

}
≥ inf

F̂n

max
θ∈{θ0,...,θM}

P
D∼Pθ

{
|F̂n(D)− F (θ)| ≥ s

}
. (14)

Next note that if
|F̂n − F (θj)| > min

0≤k≤M
|F̂n − F (θk)|

holds for some j ∈ {0, . . . ,M} then using triangle inequality we get

2|F̂n − F (θj)| ≥ |F̂n − F (θj)|+ |F̂n − F (θi∗)| ≥ |F (θi∗)− F (θj)| ≥ 2s,

where i∗ ∈ {0, . . . ,M} is defined by

|F̂n − F (θi∗)| = min
0≤k≤M

|F̂n − F (θk)|.

This shows that

P
D∼Pθj

{
|F̂n(D)− F (θj)| ≥ s

}
≥ P
D∼Pθj

{
|F̂n(D)− F (θj)| > min

0≤k≤M
|F̂n(D)− F (θk)|

}
.

Together with (14) this inequality leads to

inf
F̂n

sup
θ∈Θ

P
D∼Pθ

{
|F̂n − F (θ)| ≥ s

}
≥ inf

F̂n

max
0≤j≤M

P
D∼Pθj

{
|F̂n − F (θj)| > min

0≤k≤M
|F̂n − F (θk)|

}
.

Note that

P
D∼Pθj

{
|F̂n(D)− F (θj)| > min

0≤k≤M
|F̂n(D)− F (θk)|

}
is the probability of mistake for a minimum distance test in the problem of testing M + 1 hypotheses.
Taking infimum over all tests Ψ: X → {0, . . . ,M} we finally obtain

inf
F̂n

sup
θ∈Θ

P
D∼Pθ

{
|F̂n(D)− F (θ)| ≥ s

}
≥ inf

Ψ
max

0≤j≤M
P

D∼Pθj
{Ψ 6= j}.

We complete the proof by repeating the remaining steps of the proof of Theorem 2.5 of [22].
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B Auxiliary results

This section contains useful technical results used in the proofs in Section 3.
Lemma B.1. Assume X and Y are independent and both uniformly distributed on [−a, a] for a > 0.
Then for t 6= 0

E
[
etXY

]
=

1

2ta2
Shi(ta2),

where

Shi(z) =

∫ z

0

ex − e−x

x
dx

is a hyperbolic sine integral.

Proof. The moment-generating function of a uniform distribution is well known and has the following
form:

E
[
etX
]

=
eta − e−ta

2ta
for t 6= 0.

Using this together with the tower rule of expectation we get

E
[
etXY

]
= EY EX

[
etXY

∣∣Y ] = EY
[
etY a − e−tY a

2tY a

]
=

1

4a

∫ a

−a

etya − e−tya

tya
dy =

1

4ta2

∫ ta2

−ta2

ey − e−y

y
dy =

1

2ta2
Shi(ta2).

The following result can be found in [2, Exercise 2.3].
Theorem B.2 (Chebyshev-Cantelli’s inequality). Let t ≥ 0. Then for any random variable X with
finite mean E[X] and variance V[X],

P{X − E[X] > t} ≤ V[X]

V[X] + t2
.
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