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Abstract

A mean function in a reproducing kernel Hilbert space (RKHS), or a kernel mean, is central
to kernel methods in that it is used by many classical algorithms such as kernel principal
component analysis, and it also forms the core inference step of modern kernel methods that
rely on embedding probability distributions in RKHSs. Given a finite sample, an empirical
average has been used commonly as a standard estimator of the true kernel mean. Despite
a widespread use of this estimator, we show that it can be improved thanks to the well-
known Stein phenomenon. We propose a new family of estimators called kernel mean
shrinkage estimators (KMSEs), which benefit from both theoretical justifications and good
empirical performance. The results demonstrate that the proposed estimators outperform
the standard one, especially in a “large d, small n” paradigm.

Keywords: covariance operator, James-Stein estimators, kernel methods, kernel mean,
shrinkage estimators, Stein effect, Tikhonov regularization

1. Introduction

This paper aims to improve the estimation of the mean function in a reproducing kernel
Hilbert space (RKHS), or a kernel mean, from a finite sample. A kernel mean is defined
with respect to a probability distribution P over a measurable space X by

µP ,
∫
X
k(x, ·) dP(x) ∈ H, (1)
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where µP is a Bochner integral (see, e.g., Diestel and Uhl (1977, Chapter 2) and Dinculeanu
(2000, Chapter 1) for a definition of Bochner integral) and H is a separable RKHS endowed
with a measurable reproducing kernel k : X × X → R such that

∫
X
√
k(x, x) dP(x) < ∞.1

Given an i.i.d sample x1, x2, . . . , xn from P, the most natural estimate of the true kernel
mean is empirical average

µ̂P ,
1

n

n∑
i=1

k(xi, ·) . (2)

We refer to this estimator as a kernel mean estimator (KME). Though it is the most
commonly used estimator of the true kernel mean, the key contribution of this work is to
show that there exist estimators that can improve upon this standard estimator.

The kernel mean has recently gained attention in the machine learning community,
thanks to the introduction of Hilbert space embedding for distributions (Berlinet and
Thomas-Agnan, 2004; Smola et al., 2007). Representing the distribution as a mean func-
tion in the RKHS has several advantages. First, if the kernel k is characteristic, the map
P 7→ µP is injective.2 That is, it preserves all information about the distribution (Fukumizu
et al., 2004; Sriperumbudur et al., 2008). Second, basic operations on the distribution can
be carried out by means of inner products in RKHS, e.g., EP[f(x)] = 〈f, µP〉H for all f ∈ H,
which is an essential step in probabilistic inference (see, e.g., Song et al. (2011)). Lastly, no
intermediate density estimation is required, for example, when testing for homogeneity from
finite samples. Thus, the algorithms become less susceptible to the curse of dimensionality
(see, e.g., Wasserman (2006, Section 6.5) and Sriperumbudur et al. (2012)).

The aforementioned properties make Hilbert space embedding of distributions appealing
to many algorithms in modern kernel methods, namely, two-sample testing via maximum
mean discrepancy (MMD) (Gretton et al., 2007, 2012), kernel independence tests (Gretton
et al., 2008), Hilbert space embedding of HMMs (Song et al., 2010), and kernel Bayes rule
(Fukumizu et al., 2011). The performance of these algorithms relies directly on the quality
of the empirical estimate µ̂P.

In addition, the kernel mean has played much more fundamental role as a basic build-
ing block of many kernel-based learning algorithms. For instance, nonlinear component
analyses, such as kernel principal component analysis (KPCA), kernel Fisher discriminant
analysis (KFDA), and kernel canonical correlation analysis (KCCA), rely heavily on mean
functions and covariance operators in RKHS (Schölkopf et al., 1998; Fukumizu et al., 2007).
The kernel K-means algorithm performs clustering in feature space using mean functions as
representatives of the clusters (Dhillon et al., 2004). Moreover, the kernel mean also served
as a basis in early development of algorithms for classification, density estimation, and
anomaly detection (Shawe-Taylor and Cristianini, 2004, Chapter 5). All of these employ
the empirical average in (2) as an estimate of the true kernel mean.

1. The separability of H and measurability of k ensures that k(·, x) is a H-valued measurable function for
all x ∈ X (Steinwart and Christmann, 2008, Lemma A.5.18). The separability of H is guaranteed by
choosing X to be a separable topological space and k to be continuous (Steinwart and Christmann, 2008,
Lemma 4.33).

2. The notion of characteristic kernel is closely related to the notion of universal kernel. In brief, if the
kernel is universal, it is also characteristic, but the reverse direction is not necessarily the case. See, e.g.,
Sriperumbudur et al. (2011), for more detailed accounts on this topic.
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We show in this work that the empirical estimator in (2) is, in a certain sense, not opti-
mal, i.e., there exist “better” estimators (more below), and then propose simple estimators
that outperform the empirical estimator. While it is reasonable to argue that µ̂P is the
“best” possible estimator of µP if nothing is known about P (in fact µ̂P is minimax in the
sense of van der Vaart (1998, Theorem 25.21, Example 25.24)), in this paper we show that
“better” estimators of µP can be constructed if mild assumptions are made on P. This work
is to some extent inspired by Stein’s seminal work in 1955, which showed that the maximum
likelihood estimator (MLE) of the mean, θ of a multivariate Gaussian distribution N (θ, σ2I)
is “inadmissible” (Stein, 1955)—i.e., there exists a better estimator—though it is minimax
optimal. In particular, Stein showed that there exists an estimator that always achieves
smaller total mean squared error regardless of the true θ ∈ Rd, when d ≥ 3. Perhaps the
best known estimator of such kind is James-Steins estimator (James and Stein, 1961). For-
mally, if X ∼ N (θ, σ2I) with d ≥ 3, the estimator δ(X) = X for θ is inadmissible in mean
squared sense and is dominated by the following estimator

δJS(X) =

(
1− (d− 2)σ2

‖X‖2

)
X, (3)

i.e., E‖δJS(X) − θ‖2 ≤ E‖δ(X) − θ‖2 for all θ and there exists at least one θ for which
E‖δJS(X)− θ‖2 < E‖δ(X)− θ‖2.

Interestingly, the James-Stein estimator is itself inadmissible, and there exists a wide
class of estimators that outperform the MLE, see, e.g., Berger (1976). Ultimately, Stein’s
result suggests that one can construct estimators better than the usual empirical estimator
if the relevant parameters are estimated jointly and if the definition of risk ultimately
looks at all of these parameters (or coordinates) together. This finding is quite remarkable
as it is counter-intuitive as to why joint estimation should yield better estimators when
all parameters are mutually independent (Efron and Morris, 1977). Although the Stein
phenomenon has been extensively studied in the statistics community, it has not received
much attention in the machine learning community.

The James-Stein estimator is a special case of a larger class of estimators known as
shrinkage estimators (Gruber, 1998). In its most general form, the shrinkage estimator is
a combination of a model with low bias and high variance, and a model with high bias but
low variance. For example, one might consider the following estimator:

θ̂shrink , λθ̃ + (1− λ)θ̂ML,

where λ ∈ [0, 1], θ̂ML denotes the usual maximum likelihood estimate of θ, and θ̃ is an
arbitrary point in the input space. In the case of James-Stein estimator, we have θ̃ = 0.
Our proposal of shrinkage estimator to estimate µP will rely on the same principle, but
will differ fundamentally from the Stein’s seminal works and those along this line in two
aspects. First, our setting is “non-parametric” in the sense that we do not assume any
parametric form for the distribution, whereas most of traditional works focus on some
specific distributions, e.g., the Gaussian distribution. The non-parametric setting is very
important in most applications of kernel means because it allows us to perform statistical
inference without making any assumption on the parametric form of the true distribution
P. Second, our setting involves a “non-linear feature map” into a high-dimensional space.
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For example, if we use the Gaussian RBF kernel (see (6)), the mean function µP lives in an
infinite-dimensional space. As a result, higher moments of the distribution come into play
and therefore one cannot adopt Stein’s setting straightforwardly as it involves only the first
moment. A direct generalization of James-Stein estimator to infinite-dimensional Hilbert
space has been considered, for example, in Berger and Wolpert (1983); Mandelbaum and
Shepp (1987); Privault and Rveillac (2008). In those works, the parameter to be estimated
is assumed to be the mean of a Gaussian measure on the Hilbert space from which samples
are drawn. In contrast, our setting involves samples that are drawn from P defined on an
arbitrary measurable space, and not from a Gaussian measure defined on a Hilbert space.

1.1 Contributions

In the following, we present the main contributions of this work.

1. In Section 2.2, we propose kernel mean shrinkage estimators and show that these esti-
mators can theoretically improve upon the standard empirical estimator, µ̂P in terms
of the mean squared error (see Theorem 1 and Proposition 4), however, requiring the
knowledge of the true kernel mean. We relax this condition in Section 2.3 (see Theo-
rem 5) where without requiring the knowledge of the true kernel mean, we construct
shrinkage estimators that are uniformly better (in mean squared error) than the em-
pirical estimator over a class of distributions P. For bounded continuous translation
invariant kernels, we show that P reduces to a class of distributions whose characteris-
tic functions have an L2-norm bounded by a given constant. Through concrete choices
for P in Examples 1 and 2, we discuss the implications of the proposed estimator.

2. While the proposed estimators in Section 2.2 and 2.3 are theoretically interesting, they
are not useful in practice as they require the knowledge of the true data generating
distribution. In Section 2.4 (see Theorem 7), we present a completely data-dependent
estimator (say µ̌P)—referred to as B-KMSE—that is

√
n-consistent and satisfies

E‖µ̌P − µP‖2H < E‖µ̂P − µP‖2H +O(n−3/2) as n→∞. (4)

3. In Section 3, we present a regularization interpretation for the proposed shrinkage
estimator, wherein the shrinkage parameter is shown to be directly related to the
regularization parameter. Based on this relation, we present an alternative approach
to choosing the shrinkage parameter (different from the one proposed in Section 2.4)
through leave-one-out cross-validation, and show that the corresponding shrinkage
estimator (we refer to it as R-KMSE) is also

√
n-consistent and satisfies (4).

4. The regularization perspective also sheds light on constructing new shrinkage esti-
mators that incorporate specific information about the RKHS, based on which we
present a new

√
n-consistent shrinkage estimator—referred to as S-KMSE—in Sec-

tion 4 (see Theorem 13 and Remark 14) that takes into account spectral information
of the covariance operator in RKHS. We establish the relation of S-KMSE to the
problem of learning smooth operators (Grünewälder et al., 2013) on H, and pro-
pose a leave-one-out cross-validation method to obtain a data-dependent shrinkage
parameter. However, unlike B-KMSE and R-KMSE, it remains an open question as
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to whether S-KMSE with a data-dependent shrinkage parameter is consistent and
satisfies an inequality similar to (4). The difficulty in answering these questions lies
with the complex form of the estimator, µ̃P which is constructed so as to capture the
spectral information of the covariance operator.

5. In Section 6, we empirically evaluate the proposed shrinkage estimators of kernel mean
on both synthetic data and several real-world scenarios including Parzen window
classification, density estimation and discriminative learning on distributions. The
experimental results demonstrate the benefits of our shrinkage estimators over the
standard one.

While a shorter version of this work already appeared in Muandet et al. (2014a,b)—
particularly, the ideas in Sections 2.2, 3 and 4—, this extended version provides a rigorous
theoretical treatment (through Theorems 5, 7, 10, 13 and Proposition 15 which are new)
for the proposed estimators and also contains additional experimental results.

2. Kernel Mean Shrinkage Estimators

In this section, we first provide some definitions and notation that are used throughout
the paper, following which we present a shrinkage estimator of µP. The rest of the section
presents various properties including the inadmissibility of the empirical estimator.

2.1 Definitions & Notation

For a , (a1, . . . , ad) ∈ Rd, ‖a‖2 ,
√∑d

i=1 a
2
i . For a topological space X , C(X ) (resp.

Cb(X )) denotes the space of all continuous (resp. bounded continuous) functions on X . For
a locally compact Hausdorff space X , f ∈ C(X ) is said to vanish at infinity if for every
ε > 0 the set {x : |f(x)| ≥ ε} is compact. The class of all continuous f on X which vanish
at infinity is denoted as C0(X ). Mb(X ) (resp. M1

+(X )) denotes the set of all finite Borel
(resp. probability) measures defined on X . For X ⊂ Rd, Lr(X ) denotes the Banach space of

r-power (r ≥ 1) Lebesgue integrable functions. For f ∈ Lr(X ), ‖f‖Lr ,
(∫
X |f(x)|r dx

)1/r
denotes the Lr-norm of f for 1 ≤ r <∞. The Fourier transform of f ∈ L1(Rd) is defined as

f∧(ω) , (2π)−d/2
∫
Rd f(x)e−

√
−1ω>x dx, ω ∈ Rd. The characteristic function of P ∈M1

+(Rd)
is defined as φP(ω) ,

∫
e
√
−1ω>x dP(x), ω ∈ Rd.

An RKHS over a set X is a Hilbert space H consisting of functions on X such that for
each x ∈ X there is a function kx ∈ H with the property

〈f, kx〉H = f(x), ∀f ∈ H. (5)

The function kx(·) , k(x, ·) is called the reproducing kernel of H and the equality (5) is
called the reproducing property of H. The space H is endowed with inner product 〈·, ·〉H
and norm ‖ · ‖H. Any symmetric and positive semi-definite kernel function k : X ×X → R
uniquely determines an RKHS (Aronszajn, 1950). One of the most popular kernel functions
is the Gaussian radial basis function (RBF) kernel on X = Rd,

k(x, y) = exp

(
−‖x− y‖

2
2

2σ2

)
, x, y ∈ X , (6)

5



Muandet, Sriperumbudur, Fukumizu, Gretton, and Schölkopf

where ‖ · ‖2 denotes the Euclidean norm and σ > 0 is the bandwidth. For x ∈ H1 and
y ∈ H2, x⊗ y denotes the tensor product of x and y, and can be seen as an operator from
H2 to H1 as (x⊗ y)z = x〈y, z〉H2 for any z ∈ H2, where H1 and H2 are Hilbert spaces.

We assume throughout the paper that we observe a sample x1, x2, . . . , xn ∈ X of size
n drawn independently and identically (i.i.d.) from some unknown distribution P defined
over a separable topological space X . Denote by µ and µ̂ the true kernel mean (1) and its
empirical estimate (2) respectively. We remove the subscript for ease of notation, but we will
use µP (resp. µ̂P) and µ (resp. µ̂) interchangeably. For the well-definedness of µ as a Bochner
integral, throughout the paper we assume that k is continuous and

∫
X k(x, x) dP(x) < ∞

(see Footnote 1). We measure the quality of an estimator µ̃ ∈ H of µ by the risk function,
R : H×H→ R, R(µ, µ̃) = E‖µ− µ̃‖2H, where E denotes the expectation over the choice of
random sample of size n drawn i.i.d. from the distribution P. When µ̃ = µ̂, for the ease of
notation, we will use ∆ to denote R(µ, µ̂), which can be rewritten as

∆ = E‖µ̂− µ‖2H = E‖µ̂‖2H − ‖µ‖2H =
1

n2

n∑
i,j=1

Exi,xjk(xi, xj)− ‖µ‖2H

=
1

n2

n∑
i=1

Exik(xi, xi) +
1

n2

n∑
i 6=j

Exi,xjk(xi, xj)− ‖µ‖2H

=
1

n
(Exk(x, x)− Ex,x̃k(x, x̃)) , (7)

where ‖µ‖2H = Ex,x̃[k(x, x̃)] , Ex∼P[Ex̃∼P[k(x, x̃)]] with x and x̃ being independent copies.
An estimator µ̂1 is said to be as good as µ̂2 if R(µ, µ̂1) ≤ R(µ, µ̂2) for any P, and is better
than µ̂2 if it is as good as µ̂2 and R(µ, µ̂1) < R(µ, µ̂2) for at least one P. An estimator is
said to be inadmissible if there exists a better estimator.

2.2 Shrinkage Estimation of µP

We propose the following kernel mean estimator

µ̂α , αf∗ + (1− α)µ̂ (8)

where α ≥ 0 and f∗ is a fixed, but arbitrary function in H. Basically, it is a shrinkage
estimator that shrinks the empirical estimator toward a function f∗ by an amount specified
by α. The choice of f∗ can be arbitrary, but we will assume that f∗ is chosen independent
of the sample. If α = 0, the estimator µ̂α reduces to the empirical estimator µ̂. We denote
by ∆α the risk of the shrinkage estimator in (8), i.e., ∆α , R(µ, µ̂α).

Our first theorem asserts that the shrinkage estimator µ̂α achieves smaller risk than that
of the empirical estimator µ̂ given an appropriate choice of α, regardless of the function f∗.

Theorem 1 Let X be a separable topological space. Then for all distributions P and con-
tinuous kernel k satisfying

∫
k(x, x) dP(x) <∞, ∆α < ∆ if and only if

α ∈
(

0,
2∆

∆ + ‖f∗ − µ‖2H

)
. (9)

In particular, arg minα∈R(∆α −∆) is unique and is given by α∗ , ∆
∆+‖f∗−µ‖2

H

.
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Proof Note that

∆α = E‖µ̂α − µ‖2H = ‖E[µ̂α]− µ‖2H + E ‖µ̂α − Eµ̂α‖2H = ‖Bias(µ̂α)‖2H + Var(µ̂α),

where
Bias(µ̂α) = E[µ̂α]− µ = E[αf∗ + (1− α)µ̂]− µ = α(f∗ − µ)

and
Var(µ̂α) = (1− α)2E ‖µ̂− µ‖2H = (1− α)2∆.

Therefore,
∆α = α2 ‖f∗ − µ‖2H + (1− α)2∆, (10)

i.e., ∆α −∆ = α2
[
∆ + ‖f∗ − µ‖2H

]
− 2α∆. This is clearly negative if and only if (9) holds

and is uniquely minimized at α∗ , ∆
∆+‖f∗−µ‖2

H

.

Remark 2 (i) The shrinkage estimator always improves upon the standard one regard-
less of the direction of shrinkage, as specified by the choice of f∗. In other words,
there exists a wide class of kernel mean estimators that achieve smaller risk than the
standard one.

(ii) The range of α depends on the choice of f∗. The further f∗ is from µ, the smaller
the range of α becomes. Thus, the shrinkage gets smaller if f∗ is chosen such that it
is far from the true kernel mean. This effect is akin to James-Stein estimator.

(iii) From (9), since 0 < α < 2, i.e., 0 < (1− α)2 < 1, it follows that Var(µ̂α) < Var(µ̂) =
∆, i.e., the shrinkage estimator always improves upon the empirical estimator in terms
of the variance. Further improvement can be gained by reducing the bias by incorpo-
rating the prior knowledge about the location of µ via f∗. This implies that we can
potentially gain “twice” by adopting the shrinkage estimator: by reducing variance of
the estimator and by incorporating prior knowledge in choosing f∗ such that it is close
to the true kernel mean.

While Theorem 1 shows µ̂ to be inadmissible by providing a family of estimators that
are better than µ̂, the result is not useful as all these estimators require the knowledge of
µ (which is the parameter of interest) through the range of α given in (9). In Section 2.3,
we investigate Theorem 1 and show that µ̂α can be constructed under some weak assump-
tions on P, without requiring the knowledge of µ. From (9), the existence of positive α
is guaranteed if and only if the risk of the empirical estimator is non-zero. Under some
assumptions on k, the following result shows that ∆ = 0 if and only if the distribution P is
a Dirac distribution, i.e., the distribution P is a point mass. This result ensures, in many
non-trivial cases, a non-empty range of α for which ∆α −∆ < 0.

Proposition 3 Let k(x, y) = ψ(x − y), x, y ∈ Rd be a characteristic kernel where ψ ∈
Cb(Rd) is positive definite. Then ∆ = 0 if and only if P = δx for some x ∈ Rd.

Proof See Section 5.1.
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2.2.1 Positive-part Shrinkage Estimator

Similar to James-Stein estimator, we can show that the positive-part version of µ̂α also
outperforms µ̂, where the positive-part estimator is defined by

µ̂+
α , αf∗ + (1− α)+µ̂ (11)

with (a)+ , a if a > 0 and zero otherwise. Equation (11) can be rewritten as

µ̂+
α =

{
αf∗ + (1− α)µ̂, 0 ≤ α ≤ 1

αf∗ 1 < α < 2.
(12)

Let ∆+
α , E‖µ̂+

α −µ‖2H be the risk of the positive-part estimator. Then, the following result
shows that ∆+

α ≤ ∆α, given that α satisfies (9).

Proposition 4 For any α satisfying (9), we have that ∆+
α ≤ ∆α < ∆.

Proof According to (12), we decompose the proof into two parts. First, if 0 ≤ α ≤ 1, µ̂α
and µ̂+

α behave exactly the same. Thus, ∆+
α = ∆α. On the other hand, when 1 < α < 2,

the bias-variance decomposition of these estimators yields

∆α = α2‖f∗ − µ‖2H + (1− α)2E‖µ̂− µ‖2H and ∆+
α = α2‖f∗ − µ‖2H.

It is easy to see that ∆+
α < ∆α when 1 < α < 2. This concludes the proof.

Proposition 4 implies that, when estimating α, it is better to restrict the value of α to be
smaller than 1, although it can be greater than 1, as suggested by Theorem 1. The reason
is that if 0 ≤ α ≤ 1, the bias is an increasing function of α, whereas the variance is a
decreasing function of α. On the other hand, if α > 1, both bias and variance become
increasing functions of α. We will see later in Section 3 that µ̂α and µ̂+

α can be obtained
naturally as a solution to a regularized regression problem.

2.3 Consequences of Theorem 1

As mentioned before, while Theorem 1 is interesting from the perspective of showing that
the shrinkage estimator, µ̂α performs better—in the mean squared sense—than the empirical
estimator, it unfortunately relies on the fact that µP (i.e., the object of interest) is known,
which makes µ̂α uninteresting. Instead of knowing µP, which requires the knowledge of P,
in this section, we show that a shrinkage estimator can be constructed that performs better
than the empirical estimator, uniformly over a class of probability distributions. To this
end, we introduce the notion of an oracle upper bound.

Let P be a class of probability distributions P defined on a measurable space X . We
define an oracle upper bound as

Uk,P , inf
P∈P

2∆

∆ + ‖f∗ − µ‖2H
.

It follows immediately from Theorem 1 and the definition of Uk,P that if Uk,P 6= 0, then
for any α ∈ (0, Uk,P), ∆α − ∆ < 0 holds “uniformly” for all P ∈ P. Note that by virtue

8
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of Proposition 3, the class P cannot contain the Dirac measure δx (for any x ∈ Rd) if the
kernel k is translation invariant and characteristic on Rd. Below we give concrete examples
of P for which Uk,P 6= 0 so that the above uniformity statement holds. In particular, we
show in Theorem 5 below that for X = Rd, if a non-trivial bound on the L2-norm of the
characteristic function of P is known, it is possible to construct shrinkage estimators that
are better (in mean squared error) than the empirical average. In such a case, unlike in
Theorem 1, α does not depend on the individual distribution P, but only on an upper bound
associated with a class P.

Theorem 5 Let k(x, y) = ψ(x−y), x, y ∈ Rd with ψ ∈ Cb(Rd)∩L1(Rd) and ψ is a positive

definite function with ψ(0) > 0. For a given constant A ∈ (0, 1), let Aψ := A(2π)d/2ψ(0)
‖ψ‖L1

and

Pk,A ,
{
P ∈M1

+(Rd) : ‖φP‖L2 ≤
√
Aψ

}
,

where φP denotes the characteristic function of P. Then for all P ∈ Pk,A, ∆α < ∆ if

α ∈

0,
2(1−A)

1 + (n− 1)A+
n‖f∗‖2

H

ψ(0) + 2n
√
A‖f∗‖H√
ψ(0)

 .
Proof By Theorem 1, we have that

∆α < ∆, ∀ α ∈
(

0,
2∆

∆ + ‖f∗ − µ‖2H

)
. (13)

Consider

∆

∆ + ‖f∗ − µ‖2H
=

Exk(x, x)− Ex,x̃k(x, x̃)

Exk(x, x)− Ex,x̃k(x, x̃) + n‖f∗ − µ‖2H

(†)
=

1− Ex,x̃k(x,x̃)
Exk(x,x)

1 + (n− 1)
Ex,x̃k(x,x̃)
Exk(x,x) +

n‖f∗‖2
H

Exk(x,x) −
2n〈f∗,µ〉H
Exk(x,x)

≥
1− Ex,x̃k(x,x̃)

Exk(x,x)

1 + (n− 1)
Ex,x̃k(x,x̃)
Exk(x,x) +

n‖f∗‖2
H

Exk(x,x) +
2n‖f∗‖H

√
Ex,x̃k(x,x̃)

Exk(x,x)

, (14)

where the division by Exk(x, x) in (†) is valid since Exk(x, x) = ψ(0) > 0. Note that the
numerator in the r.h.s. of (14) is non-negative since

Ex,x̃k(x, x̃) ≤ Ex
√
k(x, x)Ex̃

√
k(x̃, x̃) ≤ Exk(x, x)

with equality holding if and only if P = δy for some y ∈ Rd (see Proposition 3). However, for
any A ∈ (0, 1) and y ∈ Rd, it is easy to verify that δy /∈ Pk,A, which implies the numerator
in fact positive. The denominator is clearly positive since Ex,x̃k(x, x̃) ≥ 0 and therefore the
r.h.s. of (14) is positive. Also note that

Ex,x̃k(x, x̃) =

∫ ∫
ψ(x− y) dP(x) dP(y)

(∗)
=

∫
|φP(ω)|2ψ∧(ω) dω

9
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≤ sup
ω∈Rd

ψ∧(ω)‖φP‖2L2
≤ (2π)−d/2‖ψ‖L1‖φP‖2L2

, (15)

where ψ∧ is the Fourier transform of ψ and (∗) follows—see (16) in the proof of Proposition 5
in Sriperumbudur et al. (2011)—by invoking Bochner’s theorem (Wendland, 2005, Theorem
6.6), which states that ψ is Fourier transform of a non-negative finite Borel measure with

density (2π)−d/2ψ∧, i.e., ψ(x) = (2π)−d/2
∫
e−ix

>ωψ∧(ω) dω, x ∈ Rd. As Exk(x, x) = ψ(0),
we have that

Ex,x̃k(x, x̃)

Exk(x, x)
≤
A‖φP‖2L2

Aψ

and therefore for any P ∈ Pk,A,
Ex,x̃k(x,x̃)
Exk(x,x) ≤ A. Using this in (14) and combining it with

(13) yields the result.

Remark 6 (i) Theorem 5 shows that for any P ∈ Pk,A, it is possible to construct a
shrinkage estimator that dominates the empirical estimator, i.e., the shrinkage esti-
mator has a strictly smaller risk than that of the empirical estimator.

(ii) Suppose that P has a density, denoted by p, with respect to the Lebesgue measure and
φP ∈ L2(Rd). By Plancherel’s theorem, p ∈ L2(Rd) as ‖p‖L2 = ‖φP‖L2, which means
that Pk,A includes distributions with square integrable densities (note that in general
not every p is square integrable). Since

‖φP‖2L2
=

∫
|φP(ω)|2 dω ≤ sup

ω∈Rd
|φP(ω)|

∫
|φP(ω)| dω = ‖φP‖L1 ,

where we used the fact that supω∈Rd |φP(ω)| = 1, it is easy to check that{
P ∈M1

+(Rd) : ‖φP‖L1 ≤
A(2π)d/2ψ(0)

‖ψ‖L1

}
⊂ Pk,A.

This means bounded densities belong to Pk,A as φP ∈ L1(Rd) implies that P has a
density, p ∈ C0(Rd). Moreover, it is easy to check that larger the value of A, larger is
the class Pk,A and smaller is the range of α for which ∆α < ∆ and vice-versa.

In the following, we present some concrete examples to elucidate Theorem 5.

Example 1 (Gaussian kernel and Gaussian distribution) Define

N ,

{
P ∈M1

+(Rd)
∣∣∣ dP(x) =

1

(2πσ2)d/2
e−
‖x−θ‖22

2σ2 dx, θ ∈ Rd, σ > 0

}
,

where ψ(x) = e−‖x‖
2
2/2τ

2
, x ∈ Rd and τ > 0. For P ∈ N, it is easy to verify that

φP(ω) = e
√
−1θ>ω− 1

2
σ2‖ω‖22 , ω ∈ Rd and ‖φP‖2L2

=

∫
e−σ

2‖ω‖22 dω = (π/σ2)d/2.

Also, ‖ψ‖L1 = (2πτ2)d/2. Therefore, for Pk,A , {P ∈ N : σ2 ≥ πτ2/A2/d}, assuming
f∗ = 0, we obtain the result in Theorem 5, i.e., the result in Theorem 5 holds for all
Gaussian distributions that are smoother (having larger variance) than that of the kernel.

10
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Example 2 (Linear kernel) Suppose f∗ = 0 and k(x, y) = x>y. While the setting of
Theorem 5 does not fit this choice of k, an inspection of its proof shows that it is possible
to construct a shrinkage estimator that improves upon µP for an appropriate class of dis-
tributions. To this end, let ϑ and Σ represent the mean vector and covariance matrix of

a distribution P defined on Rd. Then it is easy to check that
Ex,x̃k(x,x̃)
Exk(x,x) =

‖ϑ‖22
trace(Σ)+‖ϑ‖22

and

therefore for a given A ∈ (0, 1), define

Pk,A ,

{
P ∈M1

+(Rd)
∣∣∣ ‖ϑ‖22

trace(Σ)
≤ A

1−A

}
.

From (13) and (14), it is clear that for any P ∈ Pk,A, ∆α < ∆ if α ∈
(

0, 2(1−A)
1+(n−1)A

]
. Note

that this choice of kernel yields the setting similar to classical James-Stein estimation. In
James-Stein estimation, P ∈ N (see Example 1 for the definition of N) and ϑ is estimated
as (1− α̃)ϑ̂—which improves upon ϑ̂—where α̃ depends on the sample (xi)

n
i=1 and ϑ̂ is the

sample mean. In our case, for all P ∈ Pk,A =
{
P ∈ N : ‖ϑ‖2 ≤ σ

√
dA

1−A

}
, ∆α < ∆ if

α ∈
(

0, 2(1−A)
1+(n−1)A

]
. In addition, in contrast to the James-stein estimator which improves

upon the empirical estimator ( i.e., sample mean) for only d ≥ 3, we note here that the
proposed estimator improves for any d as long as P ∈ Pk,A. On the other hand, the proposed
estimator requires some knowledge about the distribution (particularly a bound on ‖ϑ‖2),
which the James-Stein estimator does not (see Section 2.5 for more details).

2.4 Data-Dependent Shrinkage Parameter

The discussion so far showed that the shrinkage estimator in (8) performs better than the
empirical estimator if the data generating distribution satisfies a certain mild condition (see
Theorem 5; Examples 1 and 2). However, since this condition is usually not checkable in
practice, the shrinkage estimator lacks applicability. In this section, we present a completely
data driven shrinkage estimator by estimating the shrinkage parameter α from data so that
the estimator does not require any knowledge of the data generating distribution.

Since the maximal difference between ∆α and ∆ occurs at α∗ (see Theorem 1), given
an i.i.d. sample X = {x1, x2, . . . , xn} from P, we propose to estimate µ using µ̂α̃ = (1− α̃)µ̂
(i.e., assuming f∗ = 0) where α̃ is an estimator of α∗ = ∆/(∆ + ‖µ‖2H) given by

α̃ =
∆̂

∆̂ + ‖µ̂‖2H
, (16)

with ∆̂ and µ̂ being the empirical versions of ∆ and µ, respectively (see Theorem 7 for
precise definitions). The following result shows that α̃ is a n

√
n-consistent estimator of α∗

and ‖µ̂α̃ − µ‖H concentrates around ‖µ̂α∗ − µ‖H. In addition, we show that

∆α∗ ≤ ∆α̃ ≤ ∆α∗ +O(n−3/2) as n→∞,

which means the performance of µ̂α̃ is similar to that of the best estimator (in mean squared
sense) of the form µ̂α. In what follows, we will call the estimator µ̂α̃ an empirical-bound
kernel mean shrinkage estimator (B-KMSE).

11
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Theorem 7 Suppose n ≥ 2 and f∗ = 0. Let k be a continuous kernel on a separable
topological space X satisfying

∫
X k(x, x) dP(x) <∞. Define

∆̂ ,
Êk(x, x)− Êk(x, x̃)

n
and ‖µ̂‖2H ,

1

n2

n∑
i,j=1

k(xi, xj)

where Êk(x, x) , 1
n

∑n
i=1 k(xi, xi) and Êk(x, x̃) , 1

n(n−1)

∑n
i 6=j k(xi, xj) are the empirical

estimators of Exk(x, x) and Ex,x̃k(x, x̃) respectively. Assume there exist finite constants
κ1 > 0, κ2 > 0, σ1 > 0 and σ2 > 0 such that

E‖k(·, x)− µ‖mH ≤
m!

2
σ2

1κ
m−2
1 , ∀m ≥ 2. (17)

and

E|k(x, x)− Exk(x, x)|m ≤ m!

2
σ2

2κ
m−2
2 , ∀m ≥ 2. (18)

Then
|α̃− α∗| = OP(n−3/2) and

∣∣∣‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H∣∣∣ = OP(n−3/2)

as n→∞. In particular,

min
α

E‖µ̂α − µ‖2H ≤ E‖µ̂α̃ − µ‖2H ≤ min
α

E‖µ̂α − µ‖2H +O(n−3/2) (19)

as n→∞.

Proof See Section 5.2.

Remark 8 (i) µ̂α̃ is a
√
n-consistent estimator of µ. This follows from

‖µ̂α̃ − µ‖H ≤ ‖µ̂α∗ − µ‖H +OP(n−3/2)

≤ (1− α∗)‖µ̂− µ‖H + α∗‖µ‖H +OP(n−3/2)

with

α∗ =
∆

∆ + ‖µ‖2H
=

Exk(x, x)− Ex,x̃k(x, x̃)

Exk(x, x) + (n− 1)Ex,x̃k(x, x̃)
= O(n−1)

as n→∞. Using (38), we obtain ‖µ̂α̃ − µ‖H = OP(n−1/2) as n→∞, which implies
that µ̂α̃ is a

√
n-consistent estimator of µ.

(ii) Equation (19) shows that ∆α̃ ≤ ∆α∗ +O(n−3/2) where ∆α∗ < ∆ (see Theorem 1) and
therefore for any P satisfying (17) and (18), ∆α̃ < ∆ +O(n−3/2) as n→∞.

(iii) Suppose the kernel is bounded, i.e., supx,y∈X |k(x, y)| ≤ κ < ∞. Then it is easy to
verify that (17) and (18) hold with σ1 =

√
κ, κ1 = 2

√
κ, σ2 = κ and κ2 = 2κ and

therefore the claims in Theorem 7 hold for bounded kernels.

(iv) For k(x, y) = x>y, we have

E‖k(·, x)− µ‖mH = E
(
‖k(·, x)− µ‖2H

)m/2
= E

(
‖x− Exx‖22

)m/2
= E‖x− Exx‖m2

12
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and
E|k(x, x)− Exk(x, x)|m = E|‖x‖22 − Ex‖x‖22|m.

The conditions in (17) and (18) hold for P ∈ N where N is defined in Example 1.
With P ∈ N and k(x, y) = x>y, the problem of estimating µ reduces to estimating θ,
for which we have presented a James-Stein-like estimator, µ̂α̃ that satisfies the oracle
inequality in (19).

(v) While the moment conditions in (17) and (18) are obviously satisfied by bounded
kernels, for unbounded kernels, these conditions are quite stringent as they require
all the higher moments to exist. These conditions can be weakened and the proof
of Theorem 7 can be carried out using Chebyshev inequality instead of Bernstein’s
inequality but at the cost of a slow rate in (19).

2.5 Connection to James-Stein Estimator

In this section, we explore the connection of our proposed estimator in (8) to the James-
Stein estimator. Recall that Stein’s setting deals with estimating the mean of the Gaussian
distribution N (θ, σ2Id), which can be viewed as a special case of kernel mean estimation
when we restrict to the class of distributions P , {N (θ, σ2Id) | θ ∈ Rd} and a linear kernel
k(x, y) = x>y, x, y ∈ Rd (see Example 2). In this case, it is easy to verify that ∆ = dσ2/n
and ∆α < ∆ for

α ∈
(

0,
2dσ2

dσ2 + n‖θ‖2

)
.

Let us assume that n = 1, in which case, we obtain ∆α < ∆ for α ∈
(

0, 2dσ2

Ex‖x‖2

)
as

Ex‖x‖2 = ‖θ‖2 + dσ2. Note that the choice of α is dependent on P through Ex‖x‖2 which
is not known in practice. To this end, we replace it with the empirical version ‖x‖2 that
depends only on the sample x. For an arbitrary constant c ∈ (0, 2d), the shrinkage estimator
(assuming f∗ = 0) can thus be written as

µ̂α = (1− α)µ̂ =

(
1− cσ2

‖x‖2

)
x = x− cσ2x

‖x‖2
,

which is exactly the James-Stein estimator in (3). This particular way of estimating the
shrinkage parameter α has an intriguing consequence, as shown in Stein’s seminal works
(Stein, 1955; James and Stein, 1961), that the shrinkage estimator µ̂α can be shown to
dominate the maximum likelihood estimator µ̂ uniformly over all θ.

While it is compelling to see that there is seemingly a fundamental principle underlying
both these settings, this connection also reveals crucial difference between our approach
and classical setting of Stein—notably, original James-Stein estimator improves upon the
sample mean even when α is data-dependent (see µ̂α above), however, with the crucial
assumption that x is normally distributed.

3. Kernel Mean Estimation as Regression Problem

In Section 2, we have shown that James-Stein-like shrinkage estimator, i.e., Equation (8),
improves upon the empirical estimator in estimating the kernel mean. In this section,

13
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we provide a regression perspective to shrinkage estimation. The starting point of the
connection between regression and shrinkage estimation is the observation that the kernel
mean µP and its empirical estimate µ̂P can be obtained as minimizers of the following risk
functionals,

E(g) ,
∫
X
‖k(·, x)− g‖2H dP(x) and Ê(g) ,

1

n

n∑
i=1

‖k(·, xi)− g‖2H ,

respectively (Kim and Scott, 2012). Given these formulations, it is natural to ask if min-
imizing the regularized version of Ê(g) will give a “better” estimator. While this question
is interesting, it has to be noted that in principle, there is really no need to consider a
regularized formulation as the problem of minimizing Ê is not ill-posed, unlike in function
estimation or regression problems. To investigate this question, we consider the minimiza-
tion of the following regularized empirical risk functional,

Êλ(g) , Ê(g) + λΩ(‖g‖H) =
1

n

n∑
i=1

‖k(·, xi)− g‖2H + λΩ(‖g‖H), (20)

where Ω : R+ → R+ denotes a monotonically increasing function and λ > 0 is the
regularization parameter. By representer theorem (Schölkopf et al., 2001), any function
g ∈ H that is a minimizer of (20) lies in a subspace spanned by {k(·, x1), . . . , k(·, xn)}, i.e.,
g =

∑n
j=1 βjk(·, xj) for some β , [β1, . . . , βn]> ∈ Rn. Hence, by setting Ω(‖g‖H) = ‖g‖2H,

we can rewrite (20) in terms of β as

Ê(g) + λΩ(‖g‖H) = β>Kβ − 2β>K1n + λβ>Kβ + c, (21)

where K is an n× n Gram matrix such that Kij = k(xi, xj), c is a constant that does not
depend on β, and 1n = [1/n, 1/n, . . . , 1/n]>. Differentiating (21) with respect to β and

setting it to zero yields an optimal weight vector β =
(

1
1+λ

)
1n and so the minimizer of

(20) is given by

µ̂λ =
1

1 + λ
µ̂ =

(
1− λ

1 + λ

)
µ̂ , (1− α)µ̂, (22)

which is nothing but the shrinkage estimator in (8) with α = λ
1+λ and f∗ = 0. This provides

a nice relation between shrinkage estimation and regularized risk minimization, wherein the
regularization helps in shrinking the estimator µ̂ towards zero although it is not required
from the point of view of ill-posedness. In particular, since 0 < 1− α < 1, µ̂λ corresponds
to a positive-part estimator proposed in Section 2.2.1 when f∗ = 0.

Note that µ̂λ is a consistent estimator of µ as λ→ 0 and n→∞, which follows from

‖µ̂λ − µ‖H ≤
1

1 + λ
‖µ̂− µ‖H +

λ

1 + λ
‖µ‖H ≤ OP(n−1/2) +O(λ).

In particular λ = τn−1/2 (for some constant τ > 0) yields the slowest possible rate for
λ→ 0 such that the best possible rate of n−1/2 is obtained for ‖µ̂λ − µ‖H → 0 as n→∞.
In addition, following the idea in Theorem 5, it is easy to show that E‖µ̂λ − µ‖2H < ∆ if
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τ ∈
(

0, 2
√
n∆

‖µ‖2
H
−∆

)
. Note that µ̂λ is not useful in practice as λ is not known a priori. However,

by choosing

λ =
∆̂

‖µ̂‖2H
,

it is easy to verify (see Theorem 7 and Remark 8) that

E‖µ̂λ − µ‖2H < E‖µ̂− µ‖2H +O(n−3/2) (23)

as n → ∞. Owing to the connection of µ̂λ to a regression problem, in the following, we
present an alternate data-dependent choice of λ obtained from leave-one-out cross validation
(LOOCV) that also satisfies (23), and we refer to the corresponding estimator as regularized
kernel mean shrinkage estimator (R-KMSE).

To this end, for a given shrinkage parameter λ, denote by µ̂
(−i)
λ as the kernel mean esti-

mated from {xj}nj=1\{xi}. We will measure the quality of µ̂
(−i)
λ by how well it approximates

k(·, xi) with the overall quality being quantified by the cross-validation score,

LOOCV (λ) =
1

n

n∑
i=1

∥∥∥k(·, xi)− µ̂(−i)
λ

∥∥∥2

H
. (24)

The LOOCV formulation in (24) differs from the one used in regression, wherein instead of
measuring the deviation of the prediction made by the function on the omitted observation,
we measure the deviation between the feature map of the omitted observation and the
function itself. The following result shows that the shrinkage parameter in µ̂λ (see (22))
can be obtained analytically by minimizing (24) and requires O(n2) operations to compute.

Proposition 9 Let n ≥ 2, ρ := 1
n2

∑n
i,j=1 k(xi, xj) and % := 1

n

∑n
i=1 k(xi, xi). Assuming

nρ > %, the unique minimizer of LOOCV (λ) is given by

λr =
n(%− ρ)

(n− 1)(nρ− %)
. (25)

Proof See Section 5.3.

It is instructive to compare

αr =
λr

λr + 1
=

%− ρ
(n− 2)ρ+ %/n

(26)

to the one in (16), where the latter can be shown to be %−ρ
%+(n−2)ρ , by noting that Êk(x, x) = %

and Êk(x, x̃) = nρ−%
n−1 (in Theorem 7, we employ the U -statistic estimator of Ex,x̃k(x, x̃),

whereas ρ in Proposition 9 can be seen as a V -statistic counterpart). This means αr
obtained from LOOCV will be relatively larger than the one obtained from (16). Like in
Theorem 7, the requirement that n ≥ 2 in Theorem 9 stems from the fact that at least
two data points are needed to evaluate the LOOCV score. Note that nρ > % if and only
if Êk(x, x̃) > 0, which is guaranteed if the kernel is positive valued. We refer to µ̂λr as
R-KMSE, whose

√
n-consistency is established by the following result, which also shows

that µ̂λr satisfies (23).
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Theorem 10 Let n ≥ 2, nρ > % where ρ and % are defined in Proposition 9 and k satisfies
the assumptions in Theorem 7. Then ‖µ̂λr − µ‖H = OP(n−1/2),

min
α

E‖µ̂α − µ‖2H ≤ E‖µ̂λr − µ‖2H ≤ min
α

E‖µ̂α − µ‖2H +O(n−3/2) (27)

where µ̂α = (1− α)µ̂ and therefore

E‖µ̂λr − µ‖2H < E‖µ̂− µ‖2H +O(n−3/2) (28)

as n→∞.

Proof See Section 5.4.

4. Spectral Shrinkage Estimators

Consider the following regularized risk minimization problem

arg infF∈H⊗H Ex∼P ‖k(x, ·)− F[k(x, ·)]‖2H + λ‖F‖2HS, (29)

where the minimization is carried over the space of Hilbert-Schmidt operators, F on H with
‖F‖HS being the Hilbert-Schmidt norm of F. As an interpretation, we are finding a smooth
operator F that maps k(x, ·) to itself (see Grünewälder et al. (2013) for more details on this
smooth operator framework). It is not difficult to show that the solution to (29) is given
by F = ΣXX (ΣXX + λI)−1 where ΣXX =

∫
k(·.x) ⊗ k(·, x) dP(x) is a covariance operator

defined on H (see, e.g., Grünewälder et al. (2012)). Note that ΣXX is a Bochner integral,
which is well-defined as a Hilbert-Schmidt operator if X is a separable topological space
and k is a continuous kernel satisfying

∫
k(x, x) dP(x) <∞. Consequently, let us define

µλ = Fµ = ΣXX (ΣXX + λI)−1µ,

which is an approximation to µ as it can be shown that ‖µλ − µ‖H → 0 as λ→ 0 (see the
proof of Theorem 13). Given an i.i.d. sample x1, . . . , xn from P, the empirical counterpart
of (29) is given by

arg minF∈H⊗H
1

n

n∑
i=1

‖k(xi, ·)− F[k(xi, ·)]‖2H + λ‖F‖2HS (30)

resulting in
µ̌λ , Fµ̂ = Σ̂XX (Σ̂XX + λI)−1µ̂ (31)

where Σ̂XX is the empirical covariance operator on H given by

Σ̂XX =
1

n

n∑
i=1

k(·.xi)⊗ k(·, xi).

Unlike µ̂λ in (22), µ̌λ shrinks µ̂ differently in each coordinate by taking the eigenspectrum
of Σ̂XX into account (see Proposition 11) and so we refer to it as the spectral kernel mean
shrinkage estimator (S-KMSE).
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Proposition 11 Let {(γi, φi)}ni=1 be eigenvalue and eigenfunction pairs of Σ̂XX . Then

µ̌λ =
n∑
i=1

γi
γi + λ

〈µ̂, φi〉Hφi.

Proof Since Σ̂XX is a finite rank operator, it is compact. Since it is also a self-adjoint op-
erator on H, by Hilbert-Schmidt theorem (Reed and Simon, 1972, Theorems VI.16, VI.17),
we have Σ̂XX =

∑n
i=1 γi〈φi, ·〉Hφi. The result follows by using this in (31).

As shown in Proposition 11, the effect of S-KMSE is to reduce the contribution of high
frequency components of µ̂ (i.e., contribution of µ̂ along the directions corresponding to
smaller γi) when µ̂ is expanded in terms of the eigenfunctions of the empirical covari-
ance operator, which are nothing but the kernel PCA basis (see Rasmussen and Williams
(2006, Section 4.3)). This means, similar to R-KMSE, S-KMSE also shrinks µ̂ towards
zero, however, the difference being that while R-KMSE shrinks equally in all coordinates,
S-KMSE controls the amount of shrinkage by the information contained in each coordinate.
In particular, S-KMSE takes into account more information about the kernel by allowing
for different amount of shrinkage in each coordinate direction according to the value of γi,
wherein the shrinkage is small in the coordinates whose γi are large. Moreover, Proposition
11 reveals that the effect of shrinkage is akin to spectral filtering (Bauer et al., 2007)—
which in our case corresponds to Tikhonov regularization—wherein S-KMSE filters out the
high-frequency components of the spectral representation of the kernel mean. Muandet
et al. (2014b) leverages this observation and generalizes S-KMSE to a family of shrinkage
estimators via spectral filtering algorithms.

The following result presents an alternate representation for µ̌λ, using which we relate
the smooth operator formulation in (30) to the regularization formulation in (20).

Proposition 12 Let Φ : Rn → H, a 7→
∑n

i=1 aik(·, xi) where a , (a1, . . . , an). Then

µ̌λ = Σ̂XX (Σ̂XX + λI)−1µ̂ = Φ(K + nλI)−1K1n,

where K is the Gram matrix, I is an identity operator on H, I is an n× n identity matrix
and 1n , [1/n, . . . , 1/n]>.

Proof See Section 5.5.

From Proposition 12, it is clear that

µ̌λ =
1√
n

n∑
j=1

(βs)jk(·, xj) (32)

where βs ,
√
n(K + nλI)−1K1n. Given the form of µ̌λ in (32), it is easy to verify that βs

is the minimizer of (20) when Êλ is minimized over {g = 1√
n

∑n
j=1(β)jk(·, xj) : β ∈ Rn}

with Ω(‖g‖H) , ‖β‖22.

The following result, discussed in Remark 14, establishes the consistency and conver-
gence rate of S-KMSE, µ̌λ.
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Theorem 13 Suppose X is a separable topological space and k is a continuous, bounded
kernel on X . Then the following hold.

(i) If µ ∈ R(ΣXX ), then ‖µ̌λ − µ‖H → 0 as λ
√
n→∞, λ→ 0 and n→∞.

(ii) If µ ∈ R(ΣXX ), then ‖µ̌λ − µ‖H = OP(n−1/2) for λ = cn−1/2 with c > 0 being a
constant independent of n.

Proof See Section 5.6.

Remark 14 While Theorem 13(i) shows that S-KMSE, µ̌λ is not universally consistent,
i.e., S-KMSE is not consistent for all P but only for those P that satisfies µ ∈ R(ΣXX ),
under some additional conditions on the kernel, the universal consistency of S-KMSE can
be guaranteed. This is achieved by assuming that constant functions are included in H,
i.e., 1 ∈ H. Note that if 1 ∈ H, then it is easy to check that there exists g ∈ H (choose
g = 1) such that µ = ΣXX g =

∫
k(·, x)g(x) dP(x), i.e., µ ∈ R(ΣXX ), and, therefore, by

Theorem 13, µ̌λ is not only universally consistent but also achieves a rate of n−1/2. Choosing
k(x, y) = k̃(x, y) + b, x, y ∈ X , b > 0 where k̃ is any bounded, continuous positive definite
kernel ensures that 1 ∈ H.

Note that the estimator µ̌λ requires the knowledge of the shrinkage or regularization pa-
rameter, λ. Similar to R-KMSE, below, we present a data dependent approach to select λ
using leave-one-out cross validation. While the shrinkage parameter for R-KMSE can be
obtained in a simple closed form (see Proposition 9), we will see below that finding the
corresponding parameter for S-KMSE is more involved. Evaluating the score function (i.e.,

(24)) näıvely requires one to solve for µ̂
(−i)
λ explicitly for every i, which is computationally

expensive. The following result provides an alternate expression for the score, which can be
evaluated efficiently. We would like to point out that a variation of Proposition 15 already
appeared in Muandet et al. (2014a, Theorem 4). However, Theorem 4 in Muandet et al.

(2014a) uses an inappropriate choice of µ̂
(−i)
λ , which we fixed in the following result.

Proposition 15 The LOOCV score of S-KMSE is given by

LOOCV (λ) =
1

n
tr
(
(K + λnI)−1K(K + λnI)−1Aλ

)
− 2

n
tr
(
(K + λnI)−1Bλ

)
+

1

n

n∑
i=1

k(xi, xi),

where λn , (n − 1)λ, Aλ , 1
(n−1)2

∑n
i=1 ci,λc

>
i,λ, Bλ , 1

n−1

∑n
i=1 ci,λk

>
i , di,λ , k>i (K +

λnI)−1ei,

ci,λ , K1− ki − eik
>
i 1 + eik(xi, xi) +

eik
>
i (K + λnI)−1K1

1− di,λ
− eik

>
i (K + λnI)−1ki

1− di,λ

−eik
>
i (K + λnI)−1eik

>
i 1

1− di,λ
+

eik
>
i (K + λnI)−1eik(xi, xi)

1− di,λ
,

ki is the ith column of K, 1 , (1, . . . , 1)> and ei , (0, 0, . . . , 1, . . . , 0)> with 1 being in the
ith position. Here tr(A) denotes the trace of a square matrix A.
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Proof See Section 5.7.

Unlike R-KMSE, a closed form expression for the minimizer of LOOCV (λ) in Proposition 15
is not possible and so proving the consistency of S-KMSE along with results similar to those
in Theorem 10 are highly non-trivial. Hence, we are not able to provide any theoretical
comparison of µ̌λ (with λ being chosen as a minimizer of LOOCV (λ) in Proposition 15) with
µ̂. However, in the next section, we provide an empirical comparison through simulations
where we show that the S-KMSE outperforms the empirical estimator.

5. Proofs

In this section, we present the missing proofs of the results of Sections 2–4.

5.1 Proof of Proposition 3

( ⇒ ) If P = δx for some x ∈ X , then µ̂ = µ = k(·, x) and thus ∆ = 0.
( ⇐ ) Suppose ∆ = 0. It follows from (7) that

∫∫
(k(x, x)− k(x, y)) dP(x) dP(y) = 0. Since

k is translation invariant, this reduces to∫∫
(ψ(0)− ψ(x− y)) dP(x) dP(y) = 0.

By invoking Bochner’s theorem (Wendland, 2005, Theorem 6.6), which states that ψ is the

Fourier transform of a non-negative finite Borel measure Λ, i.e., ψ(x) =
∫
e−ix

>ω dΛ(ω), x ∈
Rd, we obtain (see (16) in the proof of Proposition 5 in Sriperumbudur et al. (2011))∫∫

ψ(x− y) dP(x) dP(y) =

∫
|φP(ω)|2 dΛ(ω),

thereby yielding ∫
(|φP(ω)|2 − 1) dΛ(ω) = 0, (33)

where φP is the characteristic function of P. Note that φP is uniformly continuous and
|φP| ≤ 1. Since k is characteristic, Theorem 9 in Sriperumbudur et al. (2010) implies that
supp(Λ) = Rd, using which in (33) yields |φP(ω)| = 1 for all ω ∈ Rd. Since φP is positive

definite on Rd, it follows from Sasvári (2013, Lemma 1.5.1) that φP(ω) = e
√
−1ω>x for some

x ∈ Rd and thus P = δx.

5.2 Proof of Theorem 7

Before we prove Theorem 7, we present Bernstein’s inequality in separable Hilbert spaces,
quoted from Yurinsky (1995, Theorem 3.3.4), which will be used to prove Theorem 7.

Theorem 16 (Bernstein’s inequality) Let (Ω,A, P ) be a probability space, H be a sep-
arable Hilbert space, B > 0 and θ > 0. Furthermore, let ξ1, . . . , ξn : Ω → H be zero mean
independent random variables satisfying

n∑
i=1

E‖ξi‖mH ≤
m!

2
θ2Bm−2. (34)
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Then for any τ > 0,

Pn

{
(ξ1, . . . , ξn) :

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥
H

≥ 2Bτ +
√

2θ2τ

}
≤ 2e−τ .

Proof (of Theorem 7) Consider

α̃− α∗ =
∆̂

∆̂ + ‖µ̂‖2H
− ∆

∆ + ‖µ‖2H
=

∆̂‖µ‖2H −∆‖µ̂‖2H
(∆̂ + ‖µ̂‖2H)(∆ + ‖µ‖2H)

=
∆̂(‖µ‖2H − ‖µ̂‖2H)

(∆ + ‖µ‖2H)(∆̂ + ‖µ̂‖2H)
+

(∆̂−∆)‖µ̂‖2H
(∆ + ‖µ‖2H)(∆̂ + ‖µ̂‖2H)

=
α̃(‖µ‖2H − ‖µ̂‖2H)

(∆ + ‖µ‖2H)
+

(∆̂−∆)(1− α̃)

(∆ + ‖µ‖2H)
.

Rearranging α̃, we obtain

α̃− α∗ =
α∗(‖µ‖2H − ‖µ̂‖2H) + (1− α∗)(∆̂−∆)

∆̂ + ‖µ̂‖2H
.

Therefore,

|α̃− α∗| ≤
α∗|‖µ‖2H − ‖µ̂‖2H|+ (1 + α∗)|∆̂−∆|

(∆ + ‖µ‖2H)− (‖µ‖2H − ‖µ̂‖2H) + (∆̂−∆)
, (35)

where it is easy to verify that

|∆̂−∆| ≤ |Ex,x̃k(x, x̃)− Êk(x, x̃)|
n

+
|Êk(x, x)− Exk(x, x)|

n
. (36)

In the following we obtain bounds on |Êk(x, x) − Exk(x, x)|, |Ex,x̃k(x, x̃) − Êk(x, x̃)| and
|‖µ‖2H − ‖µ̂‖2H| when the kernel satisfies (17) and (18).

Bound on |Êk(x, x)− Exk(x, x)|:
Since k is a continuous kernel on a separable topological space X , it follows from Lemma
4.33 of Steinwart and Christmann (2008) that H is separable. By defining ξi , k(xi, xi)−
Exk(x.x), it follows from (18) that θ =

√
nσ2 and B = κ2 and so by Theorem 16, for any

τ > 0, with probability at least 1− 2e−τ ,

|Êk(x, x)− Exk(x, x)| ≤
√

2σ2
2τ

n
+

2κ2τ

n
. (37)

Bound on ‖µ̂− µ‖H:

By defining ξi , k(·, xi)− µ and using (17), we have θ =
√
nσ1 and B = κ1. Therefore, by

Theorem 16, for any τ > 0, with probability at least 1− 2e−τ ,

‖µ̂− µ‖H ≤
√

2σ2
1τ

n
+

2κ1τ

n
. (38)

Bound on |‖µ̂‖2H − ‖µ‖2H|:
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Since ∣∣‖µ̂‖2H − ‖µ‖2H∣∣ ≤ (‖µ̂‖H + ‖µ‖H)‖µ̂− µ‖H ≤ (‖µ̂− µ‖H + 2‖µ‖H)‖µ̂− µ‖H,

it follows from (38) that for any τ > 0, with probability at least 1− 2e−τ ,

∣∣‖µ̂‖2H − ‖µ‖2H∣∣ ≤ D1

√
τ

n
+D2

( τ
n

)
+D3

( τ
n

)3/2
+D4

( τ
n

)2
, (39)

where (Di)
4
i=1 are positive constants that depend only on σ2

1, κ and ‖µ‖H, and not on n
and τ .

Bound on |Êk(x, x̃)− Ex,x̃k(x, x̃)|:
Since

Êk(x, x̃)−Ex,x̃k(x, x̃) =
n2(‖µ̂‖2H − ‖µ‖2H) + n(Exk(x, x)− Êk(x, x)) + n(‖µ‖2H − Exk(x, x))

n(n− 1)
,

it follows from (37) and (39) that for any τ > 0, with probability at least 1− 4e−τ ,

|Êk(x, x̃)− Ex,x̃k(x, x̃)| ≤ F1

√
τ

n
+ F2

( τ
n

)
+ F3

( τ
n

)3/2
+ F4

( τ
n

)2
+
F5

n

≤ F ′1

√
1 + τ

n
+ F ′2

(
1 + τ

n

)
+ F ′3

(
1 + τ

n

)3/2

+ F ′4

(
1 + τ

n

)2

,(40)

where (Fi)
5
i=1 and (F ′i )

4
i=1 are positive constants that do not depend on n and τ .

Bound on |α̃− α∗|:
Using (37) and (40) in (36), for any τ > 0, with probability at least 1− 4e−τ ,

|∆̂−∆| ≤ F ′′1
n

√
1 + τ

n
+
F ′′2
n

(
1 + τ

n

)
+
F ′′3
n

(
1 + τ

n

)3/2

+
F ′′4
n

(
1 + τ

n

)2

,

using which in (35) along with (39), we obtain that for any τ > 0, with probability at least
1− 4e−τ ,

|α̃− α∗| ≤

∑4
i=1

(
Gi1α∗ + Gi2

n (1 + α∗)
) (

1+τ
n

)i/2∣∣∣θn −∑4
i=1

(
Gi1 + Gi2

n

) (
1+τ
n

)i/2∣∣∣ , (41)

where θn , ∆ + ‖µ‖2H and (Gi1)4
i=1, (Gi2)4

i=1 are positive constants that do not de-

pend on n and τ . Since α∗ = ∆
∆+‖µ‖2

H

=
Exk(x,x)−Ex,x̃k(x,x̃)

Exk(x,x)+(n−1)Ex,x̃k(x,x̃) = O(n−1) and θn =

Exk(x,x)+(n−1)‖µ‖2
H

n = O(1) as n → ∞, it follows from (41) that |α̃ − α∗| = OP(n−3/2) as
n→∞.

Bound on |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H|:
Using (38) and (41) in

|‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H| ≤ ‖µ̂α̃ − µ̂α∗‖H ≤ |α̃− α∗|‖µ̂− µ‖H + |α̃− α∗|‖µ‖H,
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for any τ > 0, with probability at least 1− 4e−τ , we have

|‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H| ≤

∑6
i=1

(
G′i1α∗ +

G′i2
n (1 + α∗)

) (
1+τ
n

)i/2∣∣∣θn −∑4
i=1

(
Gi1 + Gi2

n

) (
1+τ
n

)i/2∣∣∣ , (42)

where (G′i1)6
i=1 and (G′i2)6

i=1 are positive constants that do not depend on n and τ . From
(42), it is easy to see that |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H| = OP(n−3/2) as n→∞.

Bound on E‖µ̂α̃ − µ‖2H − E‖µ̂α∗ − µ‖2H:

Since

‖µ̂α̃ − µ‖2H − ‖µ̂α∗ − µ‖2H ≤ (‖µ̂α̃ − µ‖H + ‖µ̂α∗ − µ‖H) |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H|
≤ 2(‖µ̂‖H + ‖µ‖H) |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H|
≤ 2(‖µ̂− µ‖H + 2‖µ‖H) |‖µ̂α̃ − µ‖H − ‖µ̂α∗ − µ‖H| ,

for any τ > 0, with probability at least 1− 4e−τ ,

‖µ̂α̃ − µ‖2H − ‖µ̂α∗ − µ‖2H ≤

∑8
i=1

(
G′′i1α∗ +

G′′i2
n (1 + α∗)

) (
1+τ
n

)i/2∣∣∣θn −∑4
i=1

(
Gi1 + Gi2

n

) (
1+τ
n

)i/2∣∣∣ ,

≤

∑8
i=1

(
G′′i1α∗ +

G′′i2
n (1 + α∗)

) (
1+τ
n

)i/2∣∣∣θn −∑4
i=1

(
Gi1 + Gi2

n

) (
1
n

)i/2∣∣∣ ,

≤

 γn
φn

√
1+τ
n , 0 < τ ≤ n− 1

γn
φn

(
1+τ
n

)4
, τ ≥ n− 1

,

where γn , H1α∗ + H2
n (1 + α∗), φn ,

∣∣∣θn −∑4
i=1

(
Gi1 + Gi2

n

) (
1
n

)i/2∣∣∣ and (Hi)
2
i=1 are

positive constants that do not depend on n and τ . In other words,

P
(
‖µ̂α̃ − µ‖2H − ‖µ̂α∗ − µ‖2H > ε

)
≤


4 exp

(
1− n

(
εφn
γn

)2
)
, γn

φn
√
n
≤ ε ≤ γn

φn

4 exp

(
1− n

(
εφn
γn

)1/4
)
, ε ≥ γn

φn

.

Therefore,

E‖µ̂α̃ − µ‖2H − E‖µ̂α∗ − µ‖2H =

∫ ∞
0

P
(
‖µ̂α̃ − µ‖2H − ‖µ̂α∗ − µ‖2H > ε

)
dε

≤ γn
φn
√
n

+ 4

∫ γn
φn

γn
φn
√
n

exp

(
1− n

(
εφn
γn

)2
)

dε

+ 4

∫ ∞
γn
φn

exp

(
1− n

(
εφn
γn

)1/4
)

dε

=
γn

φn
√
n

+
2γn
φn
√
n

∫ n−1

0

e−t√
t+ 1

dt+
16eγn
n4φn

∫ ∞
n

t3e−t dt.
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Since
∫ n−1

0
e−t√
t+1

dt ≤
∫∞

0 e−t dt = 1 and
∫∞
n t3e−t dt ≤

∫∞
0 t3e−t dt = 6, we have

E‖µ̂α̃ − µ‖2H − E‖µ̂α∗ − µ‖2H ≤
3γn
φn
√
n

+
96eγn
n4φn

.

The claim in (19) follows by noting that γn = O(n−1) and φn = O(1) as n→∞.

5.3 Proof of Proposition 9

Define α , λ
λ+1 and φ(xi) , k(·, xi). Note that

LOOCV (λ) ,
1

n

n∑
i=1

∥∥∥∥∥∥(1− α)

n− 1

∑
j 6=i

φ(xj)− φ(xi)

∥∥∥∥∥∥
2

H

=
1

n

n∑
i=1

∥∥∥∥n(1− α)

n− 1
µ̂− 1− α

n− 1
φ(xi)− φ(xi)

∥∥∥∥2

H

=

∥∥∥∥n(1− α)

n− 1
µ̂

∥∥∥∥2

H

− 2

n

〈
n∑
i=1

n− α
n− 1

φ(xi),
n(1− α)

n− 1
µ̂

〉
H

+
1

n

n∑
i=1

∥∥∥∥n− αn− 1
φ(xi)

∥∥∥∥2

H

=

(
n2(1− α)2

(n− 1)2
− 2n(n− α)(1− α)

(n− 1)2

)
‖µ̂‖2H +

(n− α)2

n(n− 1)2

n∑
i=1

k(xi, xi)

=
1

(n− 1)2

{
α2(n2ρ− 2nρ+ %) + 2nα(ρ− %) + n2(%− ρ)

}
,

F (α)

(n− 1)2
.

Since d
dλLOOCV (λ) = (n − 1)−2 d

dαF (α)dαdλ = (n − 1)−2(1 + λ)−2 d
dαF (α), equating it zero

yields (25). It is easy to show that the second derivative of LOOCV (λ) is positive implying
that LOOCV (λ) is strictly convex and so λr is unique.

5.4 Proof of Theorem 10

Since µ̂λr = µ̂
1+λr

= (1− αr)µ̂, we have ‖µ̂λr − µ‖H ≤ αr‖µ̂‖H + ‖µ̂− µ‖H. Note that

αr =
n(%− ρ)

n(n− 2)ρ+ %
=

n∆̂

∆̂ + (n− 1)‖µ̂‖2H
=

Êk(x, x)− Êk(x, x̃)

Êk(x, x) + (n− 2)Êk(x, x̃)
,

where ∆̂, ‖µ̂‖2H, Êk(x, x) and Êk(x, x̃) are defined in Theorem 7. Consider |αr − α∗| ≤
|αr−α̃|+|α̃−α∗| where α̃ is defined in (16). From Theorem 7, we have |α̃−α∗| = OP(n−3/2)
as n→∞ and

αr − α̃ =
Êk(x, x)− Êk(x, x̃)

Êk(x, x) + (n− 2)Êk(x, x̃)
− Êk(x, x)− Êk(x, x̃)

2Êk(x, x) + (n− 2)Êk(x, x̃)

=
α̃Êk(x, x)

Êk(x, x) + (n− 2)Êk(x, x̃)
= (α̃− α∗)β + α∗β,

where β , Êk(x,x)

Êk(x,x)+(n−2)Êk(x,x̃)
. Therefore, |αr− α̃| ≤ |α̃−α∗||β|+α∗|β|, where α∗ = O(n−1)

as n → ∞, which follows from Remark 8(i). Since |Êk(x, x)− Exk(x, x)| = OP(n−1/2) and
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|Êk(x, x̃)−Ex,x̃k(x, x̃)| = OP(n−1/2), which follow from (37) and (40) respectively, we have
|β| = OP(n−1) as n → ∞. Combining the above, we have |αr − α̃| = OP(n−2), thereby
yielding |αr − α∗| = OP(n−3/2). Proceeding as in Theorem 7, we have

|‖µ̂λr − µ‖H − ‖µ̂α∗ − µ‖H| ≤ ‖µ̂λr − µα∗‖H ≤ |αr − α∗|‖µ̂− µ‖H + |αr − α∗|‖µ‖H,

which from the above follows that |‖µ̂λr − µ‖H − ‖µ̂α∗ − µ‖H| = OP(n−3/2) as n→∞. By
arguing as in Remark 8(i), it is easy to show that µ̂λr is a

√
n-consistent estimator of µ.

(27) follows by carrying out the analysis as in the proof of Theorem 7 verbatim by replacing
α̃ with αr, while (28) follows by appealing to Remark 8(ii).

5.5 Proof of Proposition 12

First note that for any i ∈ {1, . . . , n},

Σ̂XX k(·, xi) =
1

n

n∑
j=1

k(·, xj)k(xi, xj) =
1

n
Φk>i

with ki being the ith row of K. This implies for any a ∈ Rn,

Σ̂XXΦa = Σ̂XX

(
n∑
i=1

aik(·, xi)

)
(∗)
=

n∑
i=1

aiΣ̂XX k(·, xi) =
1

n

n∑
i=1

aiΦk>i ,

where (∗) holds since Σ̂XX is a linear operator. Also, since Φ is a linear operator, we obtain

Σ̂XXΦa =
1

n
Φ

(
n∑
i=1

aik
>
i

)
=

1

n
ΦKa. (43)

To prove the result, let us define a , (K + nλI)−1K1n and consider

(Σ̂XX + λI)Φa
(43)
= n−1ΦKa + λΦa = Φ(n−1K + λI)a =

1

n
ΦK1n

(43)
= Σ̂XXΦ1n = Σ̂XX µ̂.

Multiplying to the left on both sides of the above equation by (Σ̂XX + λI)−1, we obtain
Φ(K + nλI)−1K1n = (Σ̂XX + λI)−1Σ̂XX µ̂ and the result follows by noting that (Σ̂XX +
λI)−1Σ̂XX = Σ̂XX (Σ̂XX + λI)−1.

5.6 Proof of Theorem 13

By Proposition 12, we have µ̌λ = (Σ̂XX + λI)−1Σ̂XX µ̂. Define µλ , (ΣXX + λI)−1ΣXXµ.
Let us consider the decomposition µ̌λ − µ = (µ̌λ − µλ) + (µλ − µ) with

µ̌λ − µλ = (Σ̂XX + λI)−1(Σ̂XX µ̂− Σ̂XXµλ − λµλ)

(∗)
= (Σ̂XX + λI)−1(Σ̂XX µ̂− Σ̂XXµλ − ΣXXµ+ ΣXXµλ)

= (Σ̂XX + λI)−1Σ̂XX (µ̂− µ)− (Σ̂XX + λI)−1Σ̂XX (µλ − µ)

+(Σ̂XX + λI)−1ΣXX (µλ − µ),
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where we used λµλ = ΣXXµ− ΣXXµλ in (∗). By defining A(λ) , ‖µλ − µ‖H, we have

‖µ̌λ − µ‖H ≤ ‖(Σ̂XX + λI)−1Σ̂XX (µ̂− µ)‖H + ‖(Σ̂XX + λI)−1Σ̂XX (µλ − µ)‖H
+‖(Σ̂XX + λI)−1ΣXX (µλ − µ)‖H +A(λ)

≤ ‖(Σ̂XX + λI)−1Σ̂XX ‖ (‖µ̂− µ‖H +A(λ)) + ‖(Σ̂XX + λI)−1ΣXX ‖A(λ)

+A(λ), (44)

where for any bounded linear operator B, ‖B‖ denotes its operator norm. We now bound
‖(Σ̂XX + λI)−1ΣXX ‖ as follows. It is easy to show that

(Σ̂XX + λI)−1ΣXX =
(
I − (ΣXX + λI)−1(ΣXX − Σ̂XX )

)−1
(ΣXX + λI)−1ΣXX

=

 ∞∑
j=0

(
(ΣXX + λI)−1(ΣXX − Σ̂XX )

)j (ΣXX + λI)−1ΣXX ,

where the last line denotes the Neumann series and therefore

‖(Σ̂XX + λI)−1ΣXX ‖ ≤
∞∑
j=0

∥∥∥(ΣXX + λI)−1(ΣXX − Σ̂XX )
∥∥∥j ‖(ΣXX + λI)−1ΣXX ‖

≤
∞∑
j=0

∥∥∥(ΣXX + λI)−1(ΣXX − Σ̂XX )
∥∥∥j

HS
,

where we used ‖(ΣXX + λI)−1ΣXX ‖ ≤ 1 and the fact that ΣXX and Σ̂XX are Hilbert-
Schmidt operators on H as ‖ΣXX ‖HS ≤ κ < ∞ and ‖Σ̂XX ‖HS ≤ κ < ∞ with κ being the
bound on the kernel. Define η : X → HS(H), η(x) = (ΣXX + λI)−1(ΣXX − Σx), where
HS(H) is the space of Hilbert-Schmidt operators on H and Σx , k(·, x)⊗ k(·, x). Observe
that E 1

n

∑n
i=1 η(xi) = 0. Also, for all i ∈ {1, . . . , n}, ‖η(xi)‖HS ≤ ‖(ΣXX + λI)−1‖‖ΣXX −

Σx‖HS ≤ 2κ
λ and E‖η(xi)‖2HS ≤

4κ2

λ2
. Therefore, by Bernstein’s inequality (see Theorem 16),

for any τ > 0, with probability at least 1− 2e−τ over the choice of {xi}ni=1,

‖(ΣXX + λI)−1(ΣXX − Σ̂XX )‖HS ≤
κ
√

2τ

λ
√
n

+
2κτ

λn
≤ κ
√

2τ(
√

2τ + 1)

λ
√
n

.

For λ ≥ κ
√

8τ(
√

2τ+1)√
n

, we obtain that ‖(ΣXX + λI)−1(ΣXX − Σ̂XX )‖HS ≤ 1
2 and therefore

‖(Σ̂XX +λI)−1ΣXX ‖ ≤ 2. Using this along with ‖(Σ̂XX +λI)−1Σ̂XX ‖ ≤ 1 and (38) in (44),

we obtain that for any τ > 0 and λ ≥ κ
√

8τ(
√

2τ+1)√
n

, with probability at least 1− 2e−τ over

the choice of {xi}ni=1,

‖µ̌λ − µ‖H ≤
√

2κτ + 4τ
√
κ√

n
+ 4A(λ). (45)

We now analyze A(λ). Since k is continuous and X is separable, H is separable (Steinwart
and Christmann, 2008, Lemma 4.33). Also ΣXX is compact since it is Hilbert-Schmidt.
The consistency result therefore follows from Sriperumbudur et al. (2013, Proposition A.2)
which ensures A(λ) → 0 as λ → 0. The rate also follows from Sriperumbudur et al.
(2013, Proposition A.2) which yields A(λ) ≤ ‖Σ−1

XXµ‖Hλ, thereby obtaining ‖µ̌λ − µ‖H =
OP(n−1/2) for λ = cn−1/2 with c > 0 being a constant independent of n.
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5.7 Proof of Proposition 15

From Proposition 12, we have µ̌
(−i)
λ = (Σ̂(−i) + λI)−1Σ̂(−i)µ̂(−i) where

Σ̂(−i) ,
1

n− 1

∑
j 6=i

k(·, xj)⊗ k(·, xj).

and µ̂(−i) , 1
n−1

∑
j 6=i k(·, xj). Define a , k(·, xi). It is easy to verify that

Σ̂(−i) =
n

n− 1

(
Σ̂− a⊗ a

n

)
and µ̂(−i) =

n

n− 1

(
µ̂− a

n

)
.

Therefore,

µ̌
(−i)
λ =

n

n− 1

(
(Σ̂ + λ′nI)− a⊗ a

n

)−1(
Σ̂− a⊗ a

n

)(
µ̂− a

n

)
,

which after using Sherman-Morrison formula3 reduces to

µ̌
(−i)
λ =

n

n− 1

(
(Σ̂ + λ′nI)−1 +

(Σ̂ + λ′nI)−1(a⊗ a)(Σ̂ + λ′nI)−1

n− 〈a, (Σ̂ + λ′nI)−1a〉H

)(
Σ̂− a⊗ a

n

)(
µ̂− a

n

)
,

where λ′n , n−1
n λ. Using the notation in the proof of Proposition 12, the following can be

proved:

(i) (Σ̂ + λ′nI)−1Σ̂µ̂ = n−1Φ(K + λnI)−1K1.

(ii) (Σ̂ + λ′nI)−1Σ̂a = Φ(K + λnI)−1ki.

(iii) (Σ̂ + λ′nI)−1a = nΦ(K + λnI)−1ei.

Based on the above, it is easy to show that

(iv) (Σ̂ + λ′nI)−1(a⊗ a)µ̂ = (Σ̂ + λ′nI)−1a〈a, µ̂〉H = Φ(K + λnI)−1eik
>
i 1.

(v) (Σ̂ + λ′nI)−1(a⊗ a)a = (Σ̂ + λ′nI)−1a〈a, a〉H = nΦ(K + λnI)−1eik(xi, xi).

(vi) (Σ̂ + λ′nI)−1(a⊗ a)(Σ̂ + λ′nI)−1Σ̂µ̂ = Φ(K + λnI)−1eik
>
i (K + λnI)−1K1.

(vii) (Σ̂ + λ′nI)−1(a⊗ a)(Σ̂ + λ′nI)−1Σ̂a = nΦ(K + λnI)−1eik
>
i (K + λnI)−1ki.

(viii) (Σ̂ + λ′nI)−1(a⊗ a)(Σ̂ + λ′nI)−1(a⊗ a)µ̂ = nΦ(K + λnI)−1eik
>
i (K + λnI)−1eik

>
i 1.

(ix) (Σ̂+λ′nI)−1(a⊗a)(Σ̂+λ′nI)−1(a⊗a)a = n2Φ(K+λnI)−1eik
>
i (K+λnI)−1eik(xi, xi).

(x) 〈a, (Σ̂ + λ′nI)−1a〉H = nk>i (K + λnI)−1ei.

Using the above in µ̌
(−i)
λ , we obtain

µ̌
(−i)
λ =

1

n− 1
Φ(K + λnI)−1ci,λ.

Substituting the above in (24) yields the result.

3. The Sherman-Morrison formula states that (A+uv>)−1 = A−1− A−1uv>A−1

1+v>A−1u
where A is an invertible

square matrix, u and v are column vectors such that 1 + v>A−1u 6= 0.
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Figure 1: The comparison between standard estimator, µ̂ and shrinkage estimator, µ̂α (with
f∗ = 0) of the mean of the Gaussian distribution N (µ,Σ) on Rd where d = 1, 2, 3.

6. Experiments

In this section, we empirically compare the proposed shrinkage estimators to the standard
estimator of the kernel mean on both synthetic and real-world datasets. Specifically, we
consider the following estimators: i) empirical/standard kernel mean estimator (KME),
ii) KMSE whose parameter is obtained via empirical bound (B-KMSE), iii) regularized
KMSE whose parameter is obtained via Proposition 9 (R-KMSE), and iv) spectral KMSE
whose parameter is obtained via Proposition 15 (S-KMSE).

6.1 Synthetic Data

Given the true data-generating distribution P and the i.i.d. sample X = {x1, x2, . . . , xn}
from P, we evaluate different estimators using the loss function

L(β, X,P) ,

∥∥∥∥∥
n∑
i=1

βik(xi, ·)− Ex∼P[k(x, ·)]

∥∥∥∥∥
2

H

,

where β is the weight vector associated with different estimators. Then, we can esti-
mate the risk of the estimator by averaging over m independent copies of X, i.e., R̂ =
1
m

∑m
j=1 L(βj , Xj ,P).

To allow for an exact calculation of L(β, X,P), we consider P to be a mixture-of-
Gaussians distribution and k being one of the following kernel functions: i) linear ker-
nel k(x, x′) = x>x′, ii) polynomial degree-2 kernel k(x, x′) = (x>x′ + 1)2, iii) poly-
nomial degree-3 kernel k(x, x′) = (x>x′ + 1)3 and iv) Gaussian RBF kernel k(x, x′) =
exp

(
−‖x− x′‖2/2σ2

)
. We refer to them as LIN, POLY2, POLY3, and RBF, respectively.

The analytic forms of Ex∼P[k(x, ·)] for Gaussian distribution are given in Song et al. (2008)
and Muandet et al. (2012). Unless otherwise stated, we set the bandwidth parameter of the
Gaussian kernel as σ2 = median

{
‖xi − xj‖2 : i, j = 1, . . . , n

}
, i.e., the median heuristic.
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Figure 2: The risk comparison between standard estimator, µ̂ and shrinkage estimator,
µ̂α (with f∗ ∈ {2, (2, 0)>, (2, 0, 0)>}) of the mean of the Gaussian distribution
N (µ,Σ) on Rd where d = 1, 2, 3.

6.1.1 Gaussian Distribution

We begin our empirical studies by considering the simplest case in which the distribution
P is a Gaussian distribution N (µ, I) on Rd where d = 1, 2, 3 and k is a linear kernel. In
this case, the problem of kernel mean estimation reduces to just estimating the mean µ
of the Gaussian distribution N (µ, I). We consider only shrinkage estimators of form µ̂α =
αf∗+(1−α)µ̂. The true mean µ of the distribution is chosen to be 1, (1, 0)>, and (1, 0, 0)>,
respectively. Figure 1 depicts the comparison between the standard estimator and the
shrinkage estimator, µ̂α when the target f∗ is the origin. We can clearly see that even in this
simple case, an improvement can be gained by applying a small shrinkage. Furthermore, the
improvement becomes more substantial as we increase the dimensionality of the underlying
space. Figure 2 illustrates similar results when f∗ 6= 0 but f∗ ∈ {2, (2, 0)>, (2, 0, 0)>}.
Interestingly, we can still observe similar improvement, which demonstrates that the choice
of target f∗ can be arbitrary when no prior knowledge about µP is available.

6.1.2 Mixture of Gaussians Distributions

To simulate a more realistic case, let y be a sample from P ,
∑4

i=1 πiN (θi,Σi). In the
following experiments, the sample x is generated from the following generative process:

x = y + ε, θij ∼ U(−10, 10), Σi ∼ W(2× Id, 7), ε ∼ N (0, 0.2× Id),

where U(a, b) and W(Σ0, df) represent the uniform distribution and Wishart distribution,
respectively. We set π = (0.05, 0.3, 0.4, 0.25)>. The choice of parameters here is quite
arbitrary; we have experimented using various parameter settings and the results are similar
to those presented here.

Figure 3(a) depicts the comparison between the standard kernel mean estimator and
the shrinkage estimator, µ̂α when the kernel k is the Gaussian RBF kernel. For shrinkage
estimator µ̂α, we consider f∗ = C×k(x, ·) where C is a scaling factor and each element of x is
a realization of uniform random variable on (0, 1). That is, we allow the target f∗ to change
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Figure 3: (a) The risk comparison between µ̂ (KME) and µ̂α̃ (KMSE) where α̃ = ∆̂/(∆̂ +
‖f∗−µ̂‖2H). We consider when f∗ = C×k(x, ·) where x is drawn uniformly from a
pre-specified range and C is a scaling factor. (b) The probability of improvement
and the risk difference as a function of shrinkage parameter α averaged over 1,000
iterations. As the value of α increases, we get more improvement in term of the
risk, whereas the probability of improvement decreases as a function of α.

depending on the value of C. As the absolute value of C increases, the target function f∗

will move further away from the origin. The shrinkage parameter α is determined using the
empirical bound, i.e., α̃ = ∆̂/(∆̂ + ‖f∗ − µ̂‖2H). As we can see in Figure 3(a), the results
reveal how important the choice of f∗ is. That is, we may get substantial improvement over
the empirical estimator if appropriate prior knowledge is incorporated through f∗, which in
this case suggests that f∗ should lie close to the origin. We intend to investigate the topic
of prior knowledge in more detail in our future work.

Previous comparisons between standard estimator and shrinkage estimator is based
entirely on the notion of a risk, which is in fact not useful in practice as we only observe
a single copy of sample from the probability distribution. Instead, one should also look at
the probability that, given a single copy of sample, the shrinkage estimator outperforms
the standard one in term of a loss. To this end, we conduct an experiment comparing the
standard estimator and shrinkage estimator using the Gaussian RBF kernel. In addition
to the risk comparison, we also compare the probability that the shrinkage estimator gives
smaller loss than that of the standard estimator. To be more precise, the probability is
defined as a proportion of the samples drawn from the same distribution whose shrinkage
loss is smaller than the loss of the standard estimator. Figure 3(b) illustrates the risk
difference (∆α−∆) and the probability of improvement (i.e., the fraction of times ∆α < ∆)
as a function of shrinkage parameter α. In this case, the value of α is specified as a
proportion of empirical upper bound 2∆̂/(∆̂+‖µ̂‖2H). The results suggest that the shrinkage
parameter α controls the trade-off between the amount of improvement in terms of risk and
the probability that the shrinkage estimator will improve upon the standard one. However,
this trade-off only holds up to a certain value of α. As α becomes too large, both the
probability of improvement and the amount of improvement itself decrease, which coincides
with the intuition given for the positive-part shrinkage estimators (cf. Section 2.2.1).
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6.1.3 Shrinkage Estimators via Leave-One-Out Cross-Validation

In addition to the empirical upper bound, one can alternatively compute the shrinkage
parameter using leave-one-out cross-validation proposed in Section 3. Our goal here is
to compare the B-KMSE, R-KMSE and S-KMSE on synthetic data when the shrinkage
parameter λ is chosen via leave-one-out cross-validation procedure. Note that the only
difference between B-KMSE and R-KMSE is the way we compute the shrinkage parameter.

Figure 4 shows the empirical risk of different estimators using different kernels as we
increase the value of shrinkage parameter λ (note that R-KMSE and S-KMSE in Figure 4
refer to those in (22) and (31) respectively). Here we scale the shrinkage parameter by the
smallest non-zero eigenvalue γ0 of the kernel matrix K. In general, we find that R-KMSE
and S-KMSE outperforms KME. Nevertheless, as the shrinkage parameter λ becomes large,
there is a tendency that the specific shrinkage estimate might actually perform worse than
the KME, e.g., see LIN kernel and outliers in Figure 4. The result also supports our previous
observation regarding Figure 3(b), which suggests that it is very important to choose the
parameter λ appropriately.

To demonstrate the leave-one-out cross-validation procedure, we conduct similar exper-
iments in which the parameter λ is chosen by the proposed LOOCV procedure. Figure 5
depicts the percentage of improvement (with respect to the empirical risk of the KME4)
as we vary the sample size and dimension of the data. Clearly, B-KMSE, R-KMSE and
S-KMSE outperform the standard estimator. Moreover, both R-KMSE and S-KMSE tend
to outperform the B-KMSE. We can also see that the performance of S-KMSE depends
on the choice of kernel. This makes sense intuitively because S-KMSE also incorporates
the eigen-spectrum of K, whereas R-KMSE does not. The effects of both sample size and
data dimensionality are also transparent from Figure 5. While it is intuitive to see that the
improvement gets smaller with increase in sample size, it is a bit surprising to see that we
can gain much more in high-dimensional input space, especially when the kernel function is
non-linear, because the estimation happens in the feature space associated with the kernel
function rather than in the input space. Lastly, we note that the improvement is more
substantial in the “large d, small n” paradigm.

6.2 Real Data

To evaluate the proposed estimators on real-world data, we consider several benchmark ap-
plications, namely, classification via Parzen window classifier, density estimation via kernel
mean matching (Song et al., 2008), and discriminative learning on distributions (Muandet
et al., 2012; Muandet and Schölkopf, 2013). For some of these tasks we employ datasets
from the UCI repositories. We use only real-valued features, each of which is normalized to
have zero mean and unit variance.

6.2.1 Parzen Window Classifiers

One of the oldest and best-known classification algorithms is the Parzen window classifier
(Duda et al., 2000). It is easy to implement and is one of the powerful non-linear supervised

4. If we denote the loss of KME and KMSE as `KME and `KMSE , respectively, the percentage of improve-
ment is calculated as 100× (`KME − `KMSE)/`KME .
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Figure 4: The average loss of KME (left), R-KMSE (middle) and S-KMSE (right) estima-
tors with different values of shrinkage parameter. We repeat the experiments over
30 different distributions with n = 10 and d = 30.
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Figure 5: The percentage of improvement compared to KME over 30 different distributions
of B-KMSE, R-KMSE and S-KMSE with varying sample size (n) and dimension
(d). For B-KMSE, we calculate α using (16), whereas R-KMSE and S-KMSE use
LOOCV to choose λ.

learning techniques. Suppose we have data points from two classes, namely, positive class
and negative class. For positive class, we observe X , {x1, x2, . . . , xn} ⊂ X , while for
negative class we have Y , {y1, y2, . . . , ym} ⊂ X . Following Shawe-Taylor and Cristianini
(2004, Sec. 5.1.2), the Parzen window classifier is given by

f(z) = sgn

 1

n

n∑
i=1

k(z, xi)−
1

m

m∑
j=1

k(z, yj) + b

 = sgn (µ̂X(z)− µ̂Y(z) + b) , (46)

where b is a bias term given by b = 1
2(‖µ̂Y‖2H−‖µ̂X‖2H). Note that f(z) is a threshold linear

function in H with weight vector w = (1/n)
∑n

i=1 φ(xi) − (1/m)
∑m

j=1 φ(yj) (see Shawe-
Taylor and Cristianini (2004, Sec. 5.1.2) for more detail). This algorithm is often referred
to as the lazy algorithm as it does not require training.

In brief, the classifier (46) assigns the data point z to the class whose empirical kernel
mean µ̂ is closer to the feature map k(z, ·) of the data point in the RKHS. On the other hand,
we may view the empirical kernel mean µ̂X , 1

n

∑n
i=1 k(xi, ·) (resp. µ̂Y , 1

m

∑m
j=1 k(yj , ·))

as a standard empirical estimate, i.e., KME, of the true kernel mean representation of the
class-conditional distribution P(X|Y = +1) (resp. P(X|Y = −1)). Given the improvement
of shrinkage estimators over the empirical estimator of kernel mean, it is natural to expect

32



Kernel Mean Shrinkage Estimators

Dataset
Classification Error Rate

KME B-KMSE R-KMSE S-KMSE

Climate Model 0.0348±0.0118 0.0348±0.0118 0.0348±0.0118 0.0348±0.0118
Ionosphere 0.2873±0.0343 0.2768±0.0359 0.2749±0.0341 0.2800±0.0367
Parkinsons 0.1318±0.0441 0.1250±0.0366 0.1157±0.0395 0.1309±0.0396

Pima 0.2951±0.0462 0.2921±0.0442 0.2937±0.0458 0.2943±0.0471
SPECTF 0.2583±0.0829 0.2597±0.0817 0.2263±0.0626 0.2417±0.0651

Iris 0.1079±0.0379 0.1071±0.0389 0.1055±0.0389 0.1040±0.0383
Wine 0.1301±0.0381 0.1183±0.0445 0.1161±0.0414 0.1183±0.0431

Table 1: The classification error rate of Parzen window classifier via different kernel mean
estimators. The boldface represents the result whose difference from the baseline,
i.e., KME, is statistically significant.

that the performance of Parzen window classifier can be improved by employing shrinkage
estimators of the true mean representation.

Our goal in this experiment is to compare the performance of Parzen window classifier
using different kernel mean estimators. That is, we replace µ̂X and µ̂Y by their shrinkage
counterparts and evaluate the resulting classifiers across several datasets taken from the UCI
machine learning repository. In this experiment, we only consider the Gaussian RBF kernel
whose bandwidth parameter is chosen by cross-validation procedure over a uniform grid σ ∈
[0.1, 2]. We use 30% of each dataset as a test set and the rest as a training set. We employ
a simple pairwise coupling and majority vote for multi-class classification. We repeat the
experiments 100 times and perform the paired-sample t-test on the results at 5% significance
level. Table 1 reports the classification error rates of the Parzen window classifiers with
different kernel mean estimators. Although the improvement is not substantial, we can
see that the shrinkage estimators consistently give better performance than the standard
estimator.

6.2.2 Density Estimation

We perform density estimation via kernel mean matching (Song et al., 2008), wherein we fit
the density Q =

∑m
j=1 πjN (θj , σ

2
j I) to each dataset by the following minimization problem:

min
π,θ,σ

‖µ̂− µQ‖2H subject to

m∑
j=1

πj = 1, πj ≥ 0 . (47)

The empirical mean map µ̂ is obtained from samples using different estimators, whereas µQ
is the kernel mean embedding of the density Q. Unlike experiments in Song et al. (2008),
our goal is to compare different estimators of µP (where P is the true data distribution), by
replacing µ̂ in (47) with different shrinkage estimators. A better estimate of µP should lead
to better density estimation, as measured by the negative log-likelihood of Q on the test set,
which we choose to be 30% of the dataset. For each dataset, we set the number of mixture
components m to be 10. The model is initialized by running 50 random initializations using
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the k-means algorithm and returning the best. We repeat the experiments 30 times and
perform the paired sign test on the results at 5% significance level.5

The average negative log-likelihood of the model Q, optimized via different estimators,
is reported in Table 2. In most cases, both R-KMSE and S-KMSE consistently achieve
smaller negative log-likelihood when compared to KME. B-KMSE also tends to outperform
the KME. However, in few cases the KMSEs achieve larger negative log-likelihood, especially
when we use linear and degree-2 polynomial kernels. This highlight the potential of our
estimators in a non-linear setting.

6.2.3 Discriminative Learning on Probability Distributions

The last experiment involves the discriminative learning on a collection of probability dis-
tributions via the kernel mean representation. A positive semi-definite kernel between
distributions can be defined via their kernel mean embeddings. That is, given a training
sample (P̂1, y1), . . . , (P̂m, ym) ∈ P × {−1,+1} where P̂i := 1

ni

∑ni
p=1 δxip and xip ∼ Pi, the

linear kernel between two distributions is approximated by

〈µ̂Pi , µ̂Pj 〉H =

〈
ni∑
p=1

βipφ(xip),

nj∑
q=1

βjqφ(xjq)

〉
H

=

ni∑
p=1

nj∑
q=1

βipβ
j
qk(xip, x

j
q),

where the weight vectors βi and βj come from the kernel mean estimates of µPi and
µPj , respectively. The non-linear kernel can then be defined accordingly, e.g., κ(Pi,Pj) =
exp(‖µ̂Pi − µ̂Pj‖2H/2σ2), see Christmann and Steinwart (2010). Our goal in this experiment
is to investigate if the shrinkage estimators of the kernel mean improve the performance
of discriminative learning on distributions. To this end, we conduct experiments on nat-
ural scene categorization using support measure machine (SMM) (Muandet et al., 2012)
and group anomaly detection on a high-energy physics dataset using one-class SMM (OC-
SMM) (Muandet and Schölkopf, 2013). We use both linear and non-linear kernels where
the Gaussian RBF kernel is employed as an embedding kernel (Muandet et al., 2012). All
hyper-parameters are chosen by 10-fold cross-validation.6 For our unsupervised problem,
we repeat the experiments using several parameter settings and report the best results.
Table 3 reports the classification accuracy of SMM and the area under ROC curve (AUC)
of OCSMM using different kernel mean estimators. All shrinkage estimators consistently
lead to better performance on both SMM and OCSMM when compared to KME.

In summary, the proposed shrinkage estimators outperform the standard KME. While B-
KMSE and R-KMSE are very competitive compared to KME, S-KMSE tends to outperform
both B-KMSE and R-KMSE, however, sometimes leading to poor estimates depending on
the dataset and the kernel function.

5. The paired sign test is a nonparametric test that can be used to examine whether two paired samples
have the same distribution. In our case, we compare B-KMSE, R-KMSE and S-KMSE against KME.

6. In principle one can incorporate the shrinkage parameter into the cross-validation procedure. In this
work we are only interested in the value of λ returned by the proposed LOOCV procedure.
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7. Conclusion and Discussion

Motivated by the classical James-Stein phenomenon, in this paper, we proposed a shrink-
age estimator for the kernel mean µ in a reproducing kernel Hilbert space H and showed
they improve upon the empirical estimator µ̂ in the mean squared sense. We showed the
proposed shrinkage estimator µ̃ (with the shrinkage parameter being learned from data)
to be

√
n-consistent and satisfies E‖µ̃ − µ‖2H < E‖µ̂ − µ‖2H + O(n−3/2) as n → ∞. We

also provided a regularization interpretation to shrinkage estimation, using which we also
presented two shrinkage estimators, namely regularized shrinkage estimator and spectral
shrinkage estimator, wherein the first one is closely related to µ̃ while the latter exploits the
spectral decay of the covariance operator in H. We showed through numerical experiments
that the proposed estimators outperform the empirical estimator in various scenarios. Most
importantly, the shrinkage estimators not only provide more accurate estimation, but also
lead to superior performance on many real-world applications.

In this work, while we focused mainly on an estimation of the mean function in RKHS,
it is quite straightforward to extend the shrinkage idea to estimate covariance (and cross-
covariance) operators and tensors in RKHS (see Appendix A for a brief description). The
key observation is that the covariance operator can be viewed as a mean function in a tensor
RKHS. Covariance operators in RKHS are ubiquitous in many classical learning algorithms
such as kernel PCA, kernel FDA, and kernel CCA. Recently, a preliminary investigation
with some numerical results on shrinkage estimation of covariance operators is carried out
in Muandet et al. (2014a) and Wehbe and Ramdas (2015). In the future, we intend to
carry out a detailed study on the shrinkage estimation of covariance (and cross-covariance)
operators.
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Appendix A. Shrinkage Estimation of Covariance Operator

Let (HX , kX) and (HY , kY ) be separable RKHSs of functions on measurable spaces X and
Y, with measurable reproducing kernels kX and kY (with corresponding feature maps φ
and ϕ), respectively. We consider a random vector (X,Y ) : Ω → X × Y with distribution
PXY . The marginal distributions of X and Y are denoted by PX and PY , respectively.
If EXkX(X,X) < ∞ and EY kY (Y, Y ) < ∞, then there exists a unique cross-covariance
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operator ΣYX : HX → HY such that

〈g,ΣYX f〉HY = EXY [(f(X)− EX [f(X)])(g(Y )− EY [g(Y )])] = Cov(f(X), g(Y ))

holds for all f ∈ HX and g ∈ HY (Baker, 1973; Fukumizu et al., 2004). If X is equal to Y ,
we obtain the self-adjoint operator ΣXX called the covariance operator. Given i.i.d sample
{(xi, yi)}ni=1 from PXY , we can write the empirical cross-covariance operator Σ̂YX as

Σ̂YX ,
1

n

n∑
i=1

φ(xi)⊗ ϕ(yi)− µ̂X ⊗ µ̂Y (48)

where µ̂X = 1
n

∑n
i=1 φ(xi) and µ̂Y = 1

n

∑n
i=1 ϕ(yi).

7 Let φ̃ and ϕ̃ be the centered version of

the feature map φ and ϕ defined as φ̃(x) = φ(x)− µ̂X and ϕ̃(y) = ϕ(y)− µ̂Y , respectively.
Then, the empirical cross-covariance operator in (48) can be rewritten as

Σ̂YX =
1

n

n∑
i=1

φ̃(xi)⊗ ϕ̃(yi),

and therefore a shrinkage estimator of ΣYX , e.g., an equivalent of B-KMSE, can be con-
structed based on the ideas presented in this paper. That is, by the inner product property
in product space, we have

〈φ̃(x)⊗ ϕ̃(y), φ̃(x′)⊗ ϕ̃(y′)〉HX⊗HY = 〈φ̃(x), φ̃(x′)〉HX 〈 ˜ϕ(y), ˜ϕ(y′)〉HY
= k̃X(x, x′)k̃Y (y, y′).

where k̃X and k̃Y denote the centered kernel functions. As a result, we can obtain the
shrinkage estimators for ΣYX by plugging the above kernel into the KMSEs.

References

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Math-
ematical Society, 68(3):337–404, 1950.

Charles R. Baker. Joint measures and cross-covariance operators. Transactions of the
American Mathematical Society, 186:pp. 273–289, 1973.

Frank Bauer, Sergei Pereverzev, and Lorenzo Rosasco. On regularization algorithms in
learning theory. Journal of Complexity, 23(1):52 – 72, 2007. ISSN 0885-064X.

James Berger and Robert Wolpert. Estimating the mean function of a Gaussian process
and the Stein effect. Journal of Multivariate Analysis, 13(3):401–424, 1983.

James O. Berger. Admissible minimax estimation of a multivariate normal mean with
arbitrary quadratic loss. Annals of Statistics, 4(1):223–226, 1976.

7. Although it is possible to estimate µ̂X and µ̂Y using our shrinkage estimators, the key novelty here is to
directly shrink the centered covariance operator.

37



Muandet, Sriperumbudur, Fukumizu, Gretton, and Schölkopf

Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Proba-
bility and Statistics. Kluwer Academic Publishers, 2004.

Andreas Christmann and Ingo Steinwart. Universal kernels on Non-Standard input spaces.
In Advances in Neural Information Processing Systems (NIPS), pages 406–414. 2010.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: Spectral clustering
and normalized cuts. In Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 551–556, New York, NY, USA, 2004.

Joseph Diestel and John J. Uhl. Vector Measures. American Mathematical Society, Provi-
dence, 1977.

Nicolae Dinculeanu. Vector Integration and Stochastic Integration in Banach Spaces. Wiley,
2000.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition).
Wiley-Interscience, 2000.

Bradley Efron and Carl N. Morris. Stein’s paradox in statistics. Scientific American, 236
(5):119–127, 1977.

Kenji Fukumizu, Francis R. Bach, and Michael I. Jordan. Dimensionality reduction for
supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning
Research, 5:73–99, 2004.

Kenji Fukumizu, Francis R. Bach, and Arthur Gretton. Statistical consistency of kernel
canonical correlation analysis. Journal of Machine Learning Research, 8:361–383, 2007.

Kenji Fukumizu, Le Song, and Arthur Gretton. Kernel Bayes’ rule. In Advances in Neural
Information Processing Systems (NIPS), pages 1737–1745. 2011.

Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alexan-
der J. Smola. A kernel method for the two-sample-problem. In Advances in Neural
Information Processing Systems (NIPS), 2007.

Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, and
Alexander J. Smola. A kernel statistical test of independence. In Advances in Neural
Information Processing Systems 20, pages 585–592. MIT Press, 2008.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexan-
der Smola. A kernel two-sample test. Journal of Machine Learning Research, 13:723–773,
2012.

Marvin Gruber. Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression
Estimators. Statistics Textbooks and Monographs. Marcel Dekker, 1998.
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