On the Convergence of the Concave-Convex Procedure

Bharath K. Sriperumbudur and Gert R. G. Lanckriet

UC San Diego

OPT 2009

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● の へ @

Outline

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

- Difference of convex functions (d.c.) program
 - Applications in machine learning
- The concave-convex procedure (CCCP)
 - Majorization-minimization (MM) algorithm
- Convergence analysis of CCCP
 - Point-to-set maps
 - Zangwill's global convergence theorem
- Open question: Local convergence of CCCP.

D.C. Program

► D.c. function

Let Ω be a convex set in \mathbb{R}^n . A real valued function $f : \Omega \to \mathbb{R}$ is called a *d.c. function* on Ω , if there exist *two convex functions* $u, v : \Omega \to \mathbb{R}$ such that f can be expressed in the form

$$f(x) = u(x) - v(x), x \in \Omega.$$

► D.c. program

$$\begin{array}{ll} \min_{x \in \Omega} & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \ i = 1, \dots, m, \end{array} \tag{1}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

where $f_i = g_i - h_i$, i = 0, ..., m, are d.c. functions.

- Computationally hard to solve!!
- Applications in machine learning
 - Sparse PCA, transductive SVMs, feature selection in SVMs, etc.

Sparse Support Vector Machines

Consider

$$\begin{split} \min_{w \in \mathbb{R}^n} & \|\xi\|_1 + \lambda \operatorname{card}(w) \\ \text{s.t.} & y_i(w^T x_i + b) \geq 1 - \xi_i, \ i = 1, \dots, n, \\ & \xi \succeq 0, \end{split}$$

where $\lambda > 0$. Using the approximation $||w||_{\varepsilon} := \sum_{i=1}^{n} \frac{\log(1+|w_i|\varepsilon^{-1})}{\log(1+\varepsilon^{-1})}$ for sufficiently small $\varepsilon > 0$ as

$$\mathsf{card}(w) = \lim_{\varepsilon \to 0} \sum_{i=1}^{n} \frac{\mathsf{log}(1 + |w_i|\varepsilon^{-1})}{\mathsf{log}(1 + \varepsilon^{-1})},$$

we have

$$\begin{split} \min_{w \in \mathbb{R}^n} & \|\xi\|_1 + \lambda \sum_{i=1}^n \log(|w_i| + \varepsilon) \\ \text{s.t.} & y_i(w^T x_i + b) \geq 1 - \xi_i, \ i = 1, \dots, n, \\ & \xi \succeq 0, \end{split}$$

which is a *d.c. program*.

The Concave-Convex Procedure

v : differentiable

• Assume
$$\{f_i\}_{i=1}^m$$
 are convex functions. Define $\Omega := \{x : f_i(x) \le 0, i = 1, ..., m\}.$

Algorithm [Yuille and Rangarajan, 2003]

• Choose
$$x^{(0)} \in \Omega$$
.

$$x^{(l+1)} \in \arg\min_{x \in \Omega} u(x) - x^T \nabla v(x^{(l)}), \tag{2}$$

until convergence.

Goal : analyze the convergence of CCCP.

▶ When does CCCP find a local minimum or a stationary point of (1)?

• Does
$$\{x^{(l)}\}_{l=0}^{\infty}$$
 converge? If so, when?

Majorization-Minimization Algorithm

Suppose we want to minimize f over $\Omega \in \mathbb{R}^n$. Construct a *majorization* function g such that

$$\begin{cases} f(x) \leq g(x, y), \, \forall x, y \in \Omega \\ f(x) = g(x, x), \, \forall x \in \Omega \end{cases}$$

g as a function of x is an upper bound on f and coincides with f at y.

Algorithm [Hunter and Lange, 2004]

• Choose $x^{(0)} \in \Omega$.

$$x^{(l+1)} \in \arg\min_{x\in\Omega} g(x, x^{(l)}),$$

• until $x^{(l)} \in \arg \min_{x \in \Omega} g(x, x^{(l)})$.

$$f(x^{(l+1)}) \leq g(x^{(l+1)}, x^{(l)}) \leq g(x^{(l)}, x^{(l)}) = f(x^{(l)}).$$

Linear Majorization

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● の へ @

•
$$f = u - v$$

• *u* and *v* real-valued convex functions on \mathbb{R}^n .

- v is differentiable.
- $f(x) \le u(x) v(y) (x y)^T \nabla v(y) =: g(x, y).$
- ► What we get is CCCP.

Convergence Analysis of CCCP

Since $f(x^{(l+1)}) \le f(x^{(l)})$, [Yuille and Rangarajan, 2003] claimed that $\{x^{(l)}\}_{l=0}^{\infty}$ converges to a local minimum or a saddle point of (1).

 Expectation-Maximization (EM) is a special case of MM and satisfies the descent property.

 [Arslan et al., 1993] showed that EM algorithm may converge to a local minimum.

Cycling behavior.

Goal : analyze the convergence of CCCP.

▶ When does CCCP find a local minimum or a stationary point of (1)?

• Does
$$\{x^{(l)}\}_{l=0}^{\infty}$$
 converge? If so, when?

Global Convergence of Iterative Algorithms

Point-to-set map from X into Y is defined as Ψ : X → 𝒫(Y), which assigns a subset of Y to each point of X, where 𝒫(Y) denotes the power set of Y.

• Algorithm, \mathcal{A} is a point-to-set map, $\mathcal{A} : X \to \mathscr{P}(X)$, via the rule:

$$x_{k+1} \in \mathcal{A}(x_k). \tag{(\star)}$$

- ► A is globally convergent : for any chosen initial point x₀, {x_k}[∞]_{k=0} generated by (*) converges to a point for which the necessary condition of optimality holds.
- Global convergence does not imply convergence to a global optimum for all x₀.

Point-to-set Map

- ► X and Y are topological spaces.
- Ψ is said to be closed at $x_0 \in X$ if

 $x_k \stackrel{k \to \infty}{\longrightarrow} x_0, x_k \in X \text{ and } y_k \stackrel{k \to \infty}{\longrightarrow} y_0, y_k \in \Psi(x_k) \Longrightarrow y_0 \in \Psi(x_0).$

- Ψ is closed on $S \subset X$ if it is closed at every point of S.
- *Fixed point* of $\Psi : X \to \mathscr{P}(X)$ is a point x for which $\{x\} = \Psi(x)$.
- Generalized fixed point of Ψ is a point for which $x \in \Psi(x)$.
- Ψ is said to be *uniformly compact* on X if there exists a compact set
 H independent of x such that Ψ(x) ⊂ H for all x ∈ X.

Zangwill's Global Convergence Theorem

Theorem ([Zangwill, 1969]) Let $\mathcal{A} : X \to \mathscr{P}(X)$ be a point-to-set map (an algorithm) that given a point $x_0 \in X$ generates a sequence $\{x_k\}_{k=0}^{\infty}$ through the iteration

 $x_{k+1} \in \mathcal{A}(x_k).$

Also let a solution set $\Gamma \subset X$ be given. Suppose

(1) All points x_k are in a compact set $S \subset X$.

(2) There is a continuous function $\phi : X \to \mathbb{R}$ such that:

(a) $x \notin \Gamma \Rightarrow \phi(y) < \phi(x), \forall y \in \mathcal{A}(x),$ (b) $x \in \Gamma \Rightarrow \phi(y) \le \phi(x), \forall y \in \mathcal{A}(x).$

(3) \mathcal{A} is closed at x if $x \notin \Gamma$.

Then the limit of any convergent subsequence of $\{x_k\}_{k=0}^{\infty}$ is in Γ . Furthermore, $\lim_{k\to\infty} \phi(x_k) = \phi(x_*)$ for all limit points x_* . Global Convergence Theorem for CCCP-I

$$\mathcal{A}_{cccp}(y) = \arg\min\{u(x) - x^T \nabla v(y) : x \in \Omega\}.$$
(3)

Theorem

- \triangleright u, v : real-valued differentiable convex functions defined on \mathbb{R}^n .
- ∇v : continuous
- $\{f_i\}$: differentiable convex functions defined on \mathbb{R}^n .
- $\{x^{(l)}\}_{l=0}^{\infty}$: any sequence generated by \mathcal{A}_{cccp} .
- \mathcal{A}_{cccp} is uniformly compact on Ω .
- $\mathcal{A}_{cccp}(x)$ is non-empty for any $x \in \Omega$.

Assuming suitable constraint qualification, all the limit points of $\{x^{(l)}\}_{l=0}^{\infty}$ are stationary points of the d.c. program in (1). In addition

$$\lim_{t\to\infty} (u(x^{(t)}) - v(x^{(t)})) = u(x_*) - v(x_*),$$

where x_* is some stationary point of A_{cccp} .

Proof Idea

- Show that any generalized fixed point of A_{cccp} is a stationary point of (1).
- Analyze the generalized fixed points of A_{cccp} .
 - Choose Γ to the set of all generalized fixed points of A_{cccp} .
 - Let $\phi = u v$.
 - Invoke Zangwill's global convergence theorem.

Issues: oscillatory behavior.

• Let $\Omega_0 = \{x_1, x_2\}$ and let $\mathcal{A}_{cccp}(x_1) = \mathcal{A}_{cccp}(x_2) = \Omega_0$ and $u(x_1) - v(x_1) = u(x_2) - v(x_2) = 0$. Then the sequence

 $\{x_1, x_2, x_1, x_2, \ldots\}$

could be generated by A_{cccp} , with the convergent subsequences converging to the generalized fixed points x_1 and x_2 .

Global Convergence Theorem for CCCP-II

Theorem

- u, v: real-valued differentiable strictly convex functions defined on \mathbb{R}^n .
- other conditions in Global Convergence Theorem for CCCP-I hold.

Assuming suitable constraint qualification, the following hold:

- ▶ all the limit points of {x^(l)}[∞]_{l=0} are stationary points of the d.c. program in (1).
- $u(x^{(l)}) v(x^{(l)}) \rightarrow u(x_*) v(x_*) =: f^* \text{ as } l \rightarrow \infty, \text{ for some stationary point } x_*.$

||x^(l+1) - x^(l)|| → 0, and either {x^(l)}_{l=0}[∞] converges or the set of limit points of {x^(l)}_{l=0}[∞] is a connected and compact subset of 𝒴(f*), where 𝒴(a) := {x ∈ 𝒴 : u(x) - v(x) = a} and 𝒴 is the set of stationary points of (1).

If 𝒴(f*) is finite, then any sequence {x^(I)}_{I=0}[∞] generated by 𝔅_{cccp} converges to some x_{*} in 𝒴(f*).

Extensions

$$\min_{x} \quad u_0(x) - v_0(x) \\ \text{s.t.} \quad u_i(x) - v_i(x) \le 0, \ i \in 1, \dots, m,$$
 (4)

where $\{u_i\}$, $\{v_i\}$ are *real-valued convex and differentiable functions* defined on \mathbb{R}^n .

Algorithm (constrained concave-convex procedure) [Smola et al., 2005]

$$\begin{aligned} x^{(l+1)} \in \arg\min_{x} & u_{0}(x) - \widehat{v_{0}}(x; x^{(l)}) \\ \text{s.t.} & u_{i}(x) - \widehat{v_{i}}(x; x^{(l)}) \leq 0, \ i \in 1, \dots, m, \end{aligned} \tag{5}$$

where $\widehat{v_{i}}(x; x^{(l)}) := v_{i}(x^{(l)}) + (x - x^{(l)})^{T} \nabla v_{i}(x^{(l)}).$

Global Convergence Theorem for Constrained CCP

Theorem

- ► {u_i}, {v_i} : real-valued differentiable convex functions defined on ℝⁿ.
- ∇v_0 : continuous
- $\{x^{(l)}\}_{l=0}^{\infty}$: any sequence generated by \mathcal{B}_{ccp} defined in (5).
- \mathcal{B}_{ccp} is uniformly compact on $\Omega := \{x : u_i(x) - v_i(x) \le 0, i = 1, ..., m\}.$
- $\mathcal{B}_{ccp}(x)$ is non-empty for any $x \in \Omega$.

Assuming suitable constraint qualification, all the limit points of $\{x^{(l)}\}_{l=0}^{\infty}$ are stationary points of the d.c. program in (4). In addition

$$\lim_{l\to\infty}(u_0(x^{(l)})-v_0(x^{(l)}))=u_0(x_*)-v_0(x_*),$$

where x_* is some stationary point of \mathcal{B}_{ccp} .

Local Convergence of CCCP

Open question : Suppose, if x_0 is chosen such that it lies in an ϵ -neighborhood around a local minima, x_* , then will the CCCP sequence converge to x_* ? If so, what is the rate of convergence?

Proposition (Ostrowski)

Suppose that $\Psi : U \subset \mathbb{R}^n \to \mathbb{R}^n$ has a fixed point $x_* \in int(U)$ and Ψ is Fréchet-differentiable at x_* . If the spectral radius of $\Psi'(x_*)$ satisfies $\rho(\Psi'(x_*)) < 1$, and if x_0 is sufficiently close to x_* , then the iterates $\{x_k\}$ defined by $x_{k+1} = \Psi(x_k)$ all lie in U and converge to x_* .

Remarks:

- Ψ is a point-to-point map : choose u and v in (1) to be strictly convex.
- ▶ *Issue* : differentiability of \mathcal{A}_{cccp} and \mathcal{B}_{ccp} .

Summary

- Convergence of CCCP is analyzed using the global convergence theory of iterative algorithms.
- Applicable to many iterative algorithms in machine learning.
 - alternating minimization, non-negative matrix factorization, etc.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで

Local convergence analysis: open problem.

References

