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Difference of convex functions (d.c.) program

» Applications in machine learning

The concave-convex procedure (CCCP)

» Majorization-minimization (MM) algorithm

Convergence analysis of CCCP

» Point-to-set maps

» Zangwill's global convergence theorem

Open question: Local convergence of CCCP.
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D.C. Program

D.c. function

Let Q2 be a convex set in R"”. A real valued function f : Q — R is
called a d.c. function on €2, if there exist two convex functions
u,v : ) — R such that f can be expressed in the form

f(x) = u(x) — v(x), x € Q.

D.c. program

' f;
o Pk
s.t. fi(x) <0,i=1,...,m,
where f; = g; — h;, i =0,..., m, are d.c. functions.

Computationally hard to solve!l

Applications in machine learning

» Sparse PCA, transductive SVMs, feature selection in SVMs, etc.



Sparse Support Vector Machines

Consider
min - [|g]ls + Acard(w)
st.  yilw'xi+b)>1—&,i=1,...,n,

§ =0,

-1
where A > 0. Using the approximation ||wl. := > | 'O%()(;amlfl) ) for

sufficiently small ¢ > 0 as

— log(1 + |wile™?)
e=0— log(l+e71)

Y

we have

weRn

min €]+ A log(lwi| + )
=1

st.  yiwixi+b)>1—&,i=1,...,n,
£ =0,

which is a d.c. program.



The Concave-Convex Procedure

» v : differentiable
» Assume {f;}; are convex functions. Define

Q:={x:fi(x)<0,i=1,...,m}.

Algorithm [Yuille and Rangarajan, 2003]

» Choose x(9 € Q.

>

xt) ¢ arg mig u(x) — xT Vv (x), (2)
x€

» until convergence.

Goal : analyze the convergence of CCCP.

» When does CCCP find a local minimum or a stationary point of (1)7?

» Does {X(’)}jﬁo converge? If so, when?



Majorization-Minimization Algorithm

Suppose we want to minimize f over 2 € R". Construct a majorization
function g such that

{ f(x) <glx,y), Vx,y € Q
f(x) =g(x,x), Vx € Q

g as a function of x is an upper bound on f and coincides with f at y.
Algorithm [Hunter and Lange, 2004]

» Choose x(0 ¢ Q.

>
(I+1) : (1)
X € arg min g(x, x\"),

» until x{) € arg min,eq g(x, x").

f(X(/+1)) < g(X(/H),X(/)) < g(X(/)’X(/)) - f(X(/)).



Linear Majorization

f=u—v

u and v real-valued convex functions on R".

v is differentiable.

F(x) < u(x) —v(y) = (x = y) ' Vv(y) = g(x,y).

What we get is CCCP.



Convergence Analysis of CCCP

» Since f(xUT1)) < f(x), [Yuille and Rangarajan, 2003] claimed that
{xIN}92, converges to a local minimum or a saddle point of (1).

» Expectation-Maximization (EM) is a special case of MM and
satisfies the descent property.

» [Arslan et al., 1993] showed that EM algorithm may converge to a
local minimum.

» Cycling behavior.

Goal : analyze the convergence of CCCP.

» When does CCCP find a local minimum or a stationary point of (1)?

> Does {x(1)}%°, converge? If so, when?



Global Convergence of Iterative Algorithms

Point-to-set map from X into Y is defined as W : X — Z(Y),
which assigns a subset of Y to each point of X, where Z(Y)
denotes the power set of Y.

Algorithm, A is a point-to-set map, A : X — Z(X), via the rule:

Xk+1 € A(Xk). (*)

A is globally convergent : for any chosen initial point xo, {xk } %22,
generated by (x) converges to a point for which the necessary
condition of optimality holds.

Global convergence does not imply convergence to a global optimum
for all xp.
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Point-to-set Map

X and Y are topological spaces.

V is said to be closed at x5 € X if

Xk ke X0, Xk € X and yy e Yo, Yk € V(xk) = y0 € V(x0).
W js closed on S C X if it is closed at every point of S.
Fixed point of W : X — Z(X) is a point x for which {x} = W(x).
Generalized fixed point of W is a point for which x € W(x).

WV is said to be uniformly compact on X if there exists a compact set
H independent of x such that W(x) C H for all x € X.



Zangwill's Global Convergence Theorem

Theorem ([Zangwill, 1969])

Let A: X — HP(X) be a point-to-set map (an algorithm) that given a
point xo € X generates a sequence {xy }7>, through the iteration

Xk+1 < A(Xk).

Also let a solution set I C X be given. Suppose
(1) All points xi are in a compact set S C X.

(2) There is a continuous function ¢ : X — R such that:

(a) x g T = ¢(y) < o(x), Vy € A(x),
(b) x €T = ¢(y) < ¢(x), Vy € A(x).

(3) A is closed at x if x ¢ T.

Then the limit of any convergent subsequence of {xy}724 isinT.
Furthermore, limy_, o ¢(xx) = @(x«) for all limit points x,.



Global Convergence Theorem for CCCP-I
Accep(y) = argmin{u(x) — x"Vv(y) : x € Q}. (3)

Theorem

u, v : real-valued differentiable convex functions defined on R".
Vv : continuous

{f;} : differentiable convex functions defined on R".

{xIN}2, - any sequence generated by Acccp.

Accep 15 uniformly compact on ().

vV v v v v Vv

Accep(X) is non-empty for any x € Q.

Assuming suitable constraint qualification, all the limit points of {x)}5<,
are stationary points of the d.c. program in (1). In addition

im (u(x?) = v(x")) = u(x.) = v(x.),

| — o0

where X, is some stationary point of Acccp.



Proof Idea

» Show that any generalized fixed point of A..c, Is a stationary point
of (1).
> Analyze the generalized fixed points of Acccp.
» Choose I to the set of all generalized fixed points of A cccp.
> let o = u—v.

» Invoke Zangwill's global convergence theorem.

Issues: oscillatory behavior.

> Let Qo = {x1,x2} and let Accep(X1) = Accep(X2) = Qo and
u(xy1) — v(x1) = u(x2) — v(x2) = 0. Then the sequence

{X17X27X17X27 - }

could be generated by A, with the convergent subsequences
converging to the generalized fixed points x; and xo.



Global Convergence Theorem for CCCP-II

Theorem

» u, v : real-valued differentiable strictly convex functions defined on
R".
» other conditions in Global Convergence Theorem for CCCP-I hold.

Assuming suitable constraint qualification, the following hold:

> all the limit points of {x\)}%° are stationary points of the d.c.
program in (1).

> u(x) = v(xN) = u(x,) — v(x) =: f* as | — oo, for some
stationary point X.

> [[xUH) — x| — 0, and either {x\N}2, converges or the set of limit
points of {x\)}% is a connected and compact subset of .7 (f*),
where ¥ (a) := {x € ¥ : u(x) — v(x) = a} and .7 is the set of
stationary points of (1).

» If L(f*) is finite, then any sequence {X(’)}}ﬁo generated by Acccp
converges to some x, in . (f*).



Extensions

mXin up(x) — vo(x)

s.t. ui(x) —vi(x) <0,iel,...,m, (4)

where {u;}, {v;} are real-valued convex and differentiable functions
defined on R".

Algorithm (constrained concave-convex procedure) [Smola et al., 2005]
xU*t1) € arg min up(x) — %(X;X(l))
s.t. ui(x) — vi(x;xNy <0,iel,....m, (5)

where v;(x; xN) := v;(x) + (x = x)TWv;(x1).



Global Convergence Theorem for Constrained CCP

Theorem

» {u;}, {vi} : real-valued differentiable convex functions defined on
R,

» Vv : continuous

» {xN1=. : any sequence generated by B.., defined in (5).

» Beep is uniformly compact on
Q:={x:ui(x)—vi(x)<0,i=1,...,m}.

> Beep(x) is non-empty for any x € Q.

Assuming suitable constraint qualification, all the limit points of {x()1%°
are stationary points of the d.c. program in (4). In addition

lim (uo(x") — vo(x)) = wo(x:) — vo(xs),

|— o0

where x, is some stationary point of B.cp.



Local Convergence of CCCP

Open question : Suppose, if xg is chosen such that it lies in an
e-neighborhood around a local minima, x,, then will the CCCP sequence
converge to x,? If so, what is the rate of convergence?

Proposition (Ostrowski)

Suppose that V : U C R” — R" has a fixed point x, € int(U) and W is
Fréchet-differentiable at x,. If the spectral radius of W'(x,) satisfies
p(V'(xy)) < 1, and if xq is sufficiently close to x,, then the iterates {xy}
defined by xx11 = V(xk) all lie in U and converge to x.

Remarks:

» W is a point-to-point map : choose v and v in (1) to be strictly
convex.

> [ssue : differentiability of Accp and Bp.



Summary

» Convergence of CCCP is analyzed using the global convergence
theory of iterative algorithms.

» Applicable to many iterative algorithms in machine learning.

» alternating minimization, non-negative matrix factorization, etc.

» Local convergence analysis: open problem.
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