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◮ Difference of convex functions (d.c.) program

◮ Applications in machine learning

◮ The concave-convex procedure (CCCP)

◮ Majorization-minimization (MM) algorithm

◮ Convergence analysis of CCCP

◮ Point-to-set maps

◮ Zangwill’s global convergence theorem

◮ Open question: Local convergence of CCCP.



D.C. Program
◮ D.c. function

Let Ω be a convex set in R
n. A real valued function f : Ω → R is

called a d.c. function on Ω, if there exist two convex functions
u, v : Ω → R such that f can be expressed in the form

f (x) = u(x) − v(x), x ∈ Ω.

◮ D.c. program

min
x∈Ω

f0(x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m, (1)

where fi = gi − hi , i = 0, . . . ,m, are d.c. functions.

◮ Computationally hard to solve!!

◮ Applications in machine learning

◮ Sparse PCA, transductive SVMs, feature selection in SVMs, etc.



Sparse Support Vector Machines
Consider

min
w∈Rn

‖ξ‖1 + λ card(w)

s.t. yi (w
T xi + b) ≥ 1 − ξi , i = 1, . . . , n,

ξ � 0,

where λ > 0. Using the approximation ‖w‖ε :=
∑n

i=1
log(1+|wi |ε

−1)
log(1+ε

−1) for

sufficiently small ε > 0 as

card(w) = lim
ε→0

n∑

i=1

log(1 + |wi |ε
−1)

log(1 + ε−1)
,

we have

min
w∈Rn

‖ξ‖1 + λ

n∑

i=1

log(|wi | + ε)

s.t. yi (w
T xi + b) ≥ 1 − ξi , i = 1, . . . , n,

ξ � 0,

which is a d.c. program.



The Concave-Convex Procedure
◮ v : differentiable

◮ Assume {fi}
m
i=1 are convex functions. Define

Ω := {x : fi (x) ≤ 0, i = 1, . . . ,m}.

Algorithm [Yuille and Rangarajan, 2003]

◮ Choose x (0) ∈ Ω.

◮

x (l+1) ∈ arg min
x∈Ω

u(x) − xT∇v(x (l)), (2)

◮ until convergence.

Goal : analyze the convergence of CCCP.

◮ When does CCCP find a local minimum or a stationary point of (1)?

◮ Does {x (l)}∞l=0 converge? If so, when?



Majorization-Minimization Algorithm
Suppose we want to minimize f over Ω ∈ R

n. Construct a majorization
function g such that

{
f (x) ≤ g(x , y), ∀ x , y ∈ Ω
f (x) = g(x , x), ∀ x ∈ Ω

.

g as a function of x is an upper bound on f and coincides with f at y .

Algorithm [Hunter and Lange, 2004]

◮ Choose x (0) ∈ Ω.

◮

x (l+1) ∈ arg min
x∈Ω

g(x , x (l)),

◮ until x (l) ∈ arg minx∈Ω g(x , x (l)).

f (x (l+1)) ≤ g(x (l+1), x (l)) ≤ g(x (l), x (l)) = f (x (l)).



Linear Majorization

◮ f = u − v

◮ u and v real-valued convex functions on R
n.

◮ v is differentiable.

◮ f (x) ≤ u(x) − v(y) − (x − y)T∇v(y) =: g(x , y).

◮ What we get is CCCP.



Convergence Analysis of CCCP

◮ Since f (x (l+1)) ≤ f (x (l)), [Yuille and Rangarajan, 2003] claimed that
{x (l)}∞l=0 converges to a local minimum or a saddle point of (1).

◮ Expectation-Maximization (EM) is a special case of MM and
satisfies the descent property.

◮ [Arslan et al., 1993] showed that EM algorithm may converge to a
local minimum.

◮ Cycling behavior.

Goal : analyze the convergence of CCCP.

◮ When does CCCP find a local minimum or a stationary point of (1)?

◮ Does {x (l)}∞l=0 converge? If so, when?



Global Convergence of Iterative Algorithms

◮ Point-to-set map from X into Y is defined as Ψ : X → P(Y ),
which assigns a subset of Y to each point of X , where P(Y )
denotes the power set of Y .

◮ Algorithm, A is a point-to-set map, A : X → P(X ), via the rule:

xk+1 ∈ A(xk). (⋆)

◮ A is globally convergent : for any chosen initial point x0, {xk}
∞
k=0

generated by (⋆) converges to a point for which the necessary
condition of optimality holds.

◮ Global convergence does not imply convergence to a global optimum
for all x0.



Point-to-set Map

◮ X and Y are topological spaces.

◮ Ψ is said to be closed at x0 ∈ X if

xk
k→∞
−→ x0, xk ∈ X and yk

k→∞
−→ y0, yk ∈ Ψ(xk) =⇒ y0 ∈ Ψ(x0).

◮ Ψ is closed on S ⊂ X if it is closed at every point of S .

◮ Fixed point of Ψ : X → P(X ) is a point x for which {x} = Ψ(x).

◮ Generalized fixed point of Ψ is a point for which x ∈ Ψ(x).

◮ Ψ is said to be uniformly compact on X if there exists a compact set
H independent of x such that Ψ(x) ⊂ H for all x ∈ X .



Zangwill’s Global Convergence Theorem

Theorem ([Zangwill, 1969])
Let A : X → P(X ) be a point-to-set map (an algorithm) that given a
point x0 ∈ X generates a sequence {xk}

∞
k=0 through the iteration

xk+1 ∈ A(xk).

Also let a solution set Γ ⊂ X be given. Suppose

(1) All points xk are in a compact set S ⊂ X.

(2) There is a continuous function φ : X → R such that:

(a) x /∈ Γ ⇒ φ(y) < φ(x), ∀ y ∈ A(x),

(b) x ∈ Γ ⇒ φ(y) ≤ φ(x), ∀ y ∈ A(x).

(3) A is closed at x if x /∈ Γ.

Then the limit of any convergent subsequence of {xk}
∞
k=0 is in Γ.

Furthermore, limk→∞ φ(xk) = φ(x∗) for all limit points x∗.



Global Convergence Theorem for CCCP-I

Acccp(y) = arg min{u(x) − xT∇v(y) : x ∈ Ω}. (3)

Theorem

◮ u, v : real-valued differentiable convex functions defined on R
n.

◮ ∇v : continuous

◮ {fi} : differentiable convex functions defined on R
n.

◮ {x (l)}∞l=0 : any sequence generated by Acccp.

◮ Acccp is uniformly compact on Ω.

◮ Acccp(x) is non-empty for any x ∈ Ω.

Assuming suitable constraint qualification, all the limit points of {x (l)}∞l=0

are stationary points of the d.c. program in (1). In addition

lim
l→∞

(u(x (l)) − v(x (l))) = u(x∗) − v(x∗),

where x∗ is some stationary point of Acccp.



Proof Idea

◮ Show that any generalized fixed point of Acccp is a stationary point
of (1).

◮ Analyze the generalized fixed points of Acccp.

◮ Choose Γ to the set of all generalized fixed points of Acccp.

◮ Let φ = u − v.

◮ Invoke Zangwill’s global convergence theorem.

Issues: oscillatory behavior.

◮ Let Ω0 = {x1, x2} and let Acccp(x1) = Acccp(x2) = Ω0 and
u(x1) − v(x1) = u(x2) − v(x2) = 0. Then the sequence

{x1, x2, x1, x2, . . .}

could be generated by Acccp, with the convergent subsequences
converging to the generalized fixed points x1 and x2.



Global Convergence Theorem for CCCP-II

Theorem

◮ u, v : real-valued differentiable strictly convex functions defined on
R

n.

◮ other conditions in Global Convergence Theorem for CCCP-I hold.

Assuming suitable constraint qualification, the following hold:

◮ all the limit points of {x (l)}∞l=0 are stationary points of the d.c.
program in (1).

◮ u(x (l)) − v(x (l)) → u(x∗) − v(x∗) =: f ∗ as l → ∞, for some
stationary point x∗.

◮ ‖x (l+1) − x (l)‖ → 0, and either {x (l)}∞l=0 converges or the set of limit
points of {x (l)}∞l=0 is a connected and compact subset of S (f ∗),
where S (a) := {x ∈ S : u(x) − v(x) = a} and S is the set of
stationary points of (1).

◮ If S (f ∗) is finite, then any sequence {x (l)}∞l=0 generated by Acccp

converges to some x∗ in S (f ∗).



Extensions

min
x

u0(x) − v0(x)

s.t. ui (x) − vi (x) ≤ 0, i ∈ 1, . . . ,m, (4)

where {ui}, {vi} are real-valued convex and differentiable functions
defined on R

n.

Algorithm (constrained concave-convex procedure) [Smola et al., 2005]

x (l+1) ∈ arg min
x

u0(x) − v̂0(x ; x (l))

s.t. ui (x) − v̂i (x ; x (l)) ≤ 0, i ∈ 1, . . . ,m, (5)

where v̂i (x ; x (l)) := vi (x
(l)) + (x − x (l))T∇vi (x

(l)).



Global Convergence Theorem for Constrained CCP

Theorem

◮ {ui}, {vi} : real-valued differentiable convex functions defined on
R

n.

◮ ∇v0 : continuous

◮ {x (l)}∞l=0 : any sequence generated by Bccp defined in (5).

◮ Bccp is uniformly compact on
Ω := {x : ui (x) − vi (x) ≤ 0, i = 1, . . . ,m}.

◮ Bccp(x) is non-empty for any x ∈ Ω.

Assuming suitable constraint qualification, all the limit points of {x (l)}∞l=0

are stationary points of the d.c. program in (4). In addition

lim
l→∞

(u0(x
(l)) − v0(x

(l))) = u0(x∗) − v0(x∗),

where x∗ is some stationary point of Bccp.



Local Convergence of CCCP

Open question : Suppose, if x0 is chosen such that it lies in an
ǫ-neighborhood around a local minima, x⋆, then will the CCCP sequence
converge to x⋆? If so, what is the rate of convergence?

Proposition (Ostrowski)
Suppose that Ψ : U ⊂ R

n → R
n has a fixed point x∗ ∈ int(U) and Ψ is

Fréchet-differentiable at x∗. If the spectral radius of Ψ′(x∗) satisfies
ρ(Ψ′(x∗)) < 1, and if x0 is sufficiently close to x∗, then the iterates {xk}
defined by xk+1 = Ψ(xk) all lie in U and converge to x∗.

Remarks:

◮ Ψ is a point-to-point map : choose u and v in (1) to be strictly
convex.

◮ Issue : differentiability of Acccp and Bccp.



Summary

◮ Convergence of CCCP is analyzed using the global convergence
theory of iterative algorithms.

◮ Applicable to many iterative algorithms in machine learning.

◮ alternating minimization, non-negative matrix factorization, etc.

◮ Local convergence analysis: open problem.
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