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Abstract

The goal of this paper is to investigate the advantages and disadvantages of learn-
ing in Banach spaces over Hilbert spaces. While many works have been carried
out in generalizing Hilbert methods to Banach spaces, in this paper, we consider
the simple problem of learning a Parzen window classifier in areproducing kernel
Banach space (RKBS)—which is closely related to the notion of embedding prob-
ability measures into an RKBS—in order to carefully understand its pros and cons
over the Hilbert space classifier. We show that while this generalization yields
richer distance measures on probabilities compared to its Hilbert space counter-
part, it however suffers from serious computational drawback limiting its practi-
cal applicability, which therefore demonstrates the need for developing efficient
learning algorithms in Banach spaces.

1 Introduction

Kernel methods have been popular in machine learning and pattern analysis for their superior per-
formance on a wide spectrum of learning tasks. They are broadly established as an easy way to
construct nonlinear algorithms from linear ones, by embedding data points into reproducing kernel
Hilbert spaces (RKHSs) [1, 16, 17]. Over the last few years, generalization of these techniques to
Banach spaces has gained interest. This is because any two Hilbert spaces over a common scalar
field with the same dimension are isometrically isomorphic while Banach spaces provide more va-
riety in geometric structures and norms that are potentially useful for learning and approximation.

To sample the literature, classification in Banach spaces, more generally in metric spaces were stud-
ied in [3, 24, 12, 6]. Minimizing a loss function subject to a regularization condition on a norm
in a Banach space was studied by [3, 14, 26, 23] and online learning in Banach spaces was con-
sidered in [19]. While all these works have focused on theoretical generalizations of Hilbert space
methods to Banach spaces, the practical viability and inherent computational issues associated with
the Banach space methods has so far not been highlighted. Thegoal of this paper is to study the
advantages/disadvantages of learning in Banach spaces in comparison to Hilbert space methods, in
particular, from the point of view of embedding probabilitymeasures into these spaces.

The concept of embedding probability measures into RKHS [4,7, 10, 18] provides a powerful and
straightforward method to deal with high-order statisticsof random variables. An immediate appli-
cation of this notion is to problems of comparing distributions based on finite samples: examples
include tests of homogeneity [10], independence [11], and conditional independence [8]. Formally,
suppose we are given the setP(X ) of all Borel probability measures defined on the topological
spaceX , and the RKHS(H, k) of functions onX with k as its reproducing kernel (r.k.). Ifk is
measurable and bounded, then we can embedP in H as

P 7→
∫

X
k(·, x) dP(x). (1)
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Given the embedding in (1), the RKHS distance between the embeddings ofP andQ defines a
pseudo-metric betweenP andQ as

γk(P,Q) :=

∥∥∥∥
∫

X
k(·, x) dP(x) −

∫

X
k(·, x) dQ(x)

∥∥∥∥
H

. (2)

It is clear that when the embedding in (1) is injective, thenP andQ can be distinguished based
on their embeddings

∫
X k(·, x) dP(x) and

∫
X k(·, x) dQ(x). [20] related RKHS embeddings to the

problem of binary classification by showing thatγk(P,Q) is the negative of the optimal risk associ-
ated with the Parzen window classifier inH. Extending this classifier to Banach space and studying
the highlights/issues associated with this generalization will throw light on the same associated with
more complex Banach space learning algorithms. With this motivation, in this paper, we consider
the generalization of the notion of RKHS embedding of probability measures to Banach spaces—in
particular reproducing kernel Banach spaces (RKBSs) [26]—and then compare the properties of the
RKBS embedding to its RKHS counterpart.

To derive RKHS based learning algorithms, it is essential toappeal to the Riesz representation
theorem (as an RKHS is defined by the continuity of evaluationfunctionals), which establishes the
existence of a reproducing kernel. This theorem hinges on the fact that a notion of inner product can
be defined on Hilbert spaces. In this paper, as in [26], we dealwith RKBSs that areuniformly Fŕechet
differentiableanduniformly convex(called as s.i.p. RKBS) as many Hilbert space arguments—most
importantly the Riesz representation theorem—can be carried over to such spaces through the notion
of semi-inner-product(s.i.p.) [13], which is a more general structure than an inner product. Based
on Zhang et al. [26], who recently developed RKBS counterparts of RKHS based algorithms like
regularization networks, support vector machines, kernelprincipal component analysis, etc., we
provide a review of s.i.p. RKBS in Section 3. We present our main contributions in Sections 4 and
5. In Section 4,first, we derive an RKBS embedding ofP intoB′ as

P 7→
∫

X
K(·, x) dP(x), (3)

whereB is an s.i.p. RKBS withK as its reproducing kernel (r.k.) andB′ is the topological dual of
B. Note that (3) is similar to (1), but more general than (1) asK in (3) need not have to be positive
definite (pd), in fact, not even symmetric (see Section 3; also see Examples 2 and 3). Based on (3),
we define

γK(P,Q) :=

∥∥∥∥
∫

X
K(·, x) dP(x) −

∫

X
K(·, x) dQ(x)

∥∥∥∥
B′

,

a pseudo-metric onP(X ), which we show to be the negative of the optimal risk associated with the
Parzen window classifier inB′. Second, we characterize the injectivity of (3) in Section 4.1 wherein
we show that the characterizations obtained for the injectivity of (3) are similar to those obtained for
(1) and coincide with the latter whenB is an RKHS.Third, in Section 4.2, we consider the empirical
estimation ofγK(P,Q) based on finite random samples drawn i.i.d. fromP andQ and study its
consistency and the rate of convergence. This is useful in applications like two-sample tests (also in
binary classification as it relates to the consistency of theParzen window classifier) where different
P andQ are to be distinguished based on the finite samples drawn fromthem and it is important that
the estimator is consistent for the test to be meaningful. Weshow that the consistency and the rate
of convergence of the estimator depend on theRademacher typeof B′. This result coincides with
the one obtained forγk whenB is an RKHS.

The above mentioned results, while similar to results obtained for RKHS embeddings, are signifi-
cantly more general, as they apply RKBS spaces, which subsume RKHSs. We can therefore expect
to obtain “richer” metricsγK than when being restricted to RKHSs (see Examples 1–3). On the
other hand, one disadvantage of the RKBS framework is thatγK(P,Q) cannot be computed in a
closed form unlikeγk (see Section 4.3). Though this could seriously limit the practical impact of
the RKBS embeddings, in Section 5, we show that closed form expression forγK and its empirical
estimator can be obtained for some non-trivial Banach spaces (see Examples 1–3). However, the
critical drawback of the RKBS framework is that the computation of γK and its empirical estima-
tor is significantly more involved and expensive than the RKHS framework, which means a simple
kernel algorithm like a Parzen window classifier, when generalized to Banach spaces suffers from
a serious computational drawback, thereby limiting its practical impact. Given the advantages of
learning in Banach space over Hilbert space, this work, therefore demonstrates the need for the
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development of efficient algorithms in Banach spaces in order to make the problem of learning in
Banach spaces worthwhile compared to its Hilbert space counterpart. The proofs of the results in
Sections 4 and 5 are provided in the appendix.

2 Notation

We introduce some notation that is used throughout the paper. For a topological spaceX , C(X )
(resp.Cb(X )) denotes the space of all continuous (resp.bounded continuous) functions onX . For
a locally compact Hausdorff spaceX , f ∈ C(X ) is said tovanish at infinityif for every ǫ > 0 the
set{x : |f(x)| ≥ ǫ} is compact. The class of all continuousf on X which vanish at infinity is
denoted asC0(X ). For a Borel measureµ on X , Lp(X , µ) denotes the Banach space ofp-power
(p ≥ 1) µ-integrable functions. For a functionf defined onRd, f̂ and f∨ denote the Fourier
and inverse Fourier transforms off . Sincef̂ andf∨ on Rd can be defined inL1, L2 or more
generally indistributionalsenses, they should be treated in the appropriate sense depending on the
context. In theL1 sense, the Fourier and inverse Fourier transforms off ∈ L1(Rd) are defined as:
f̂(y) = (2π)−d/2

∫
Rd f(x) e

−i〈y,x〉 dx andf∨(y) = (2π)−d/2
∫
Rd f(x) e

i〈y,x〉 dx, wherei denotes
the imaginary unit

√
−1. φP :=

∫
Rd e

i〈·,x〉 dP(x) denotes the characteristic function ofP.

3 Preliminaries: Reproducing Kernel Banach Spaces

In this section, we briefly review the theory of RKBSs, which was recently studied by [26] in the
context of learning in Banach spaces. LetX be a prescribed input space.

Definition 1 (Reproducing kernel Banach space). An RKBSB onX is a reflexive Banach space of
functions onX such that its topological dualB′ is isometric to a Banach space of functions onX
and the point evaluations are continuous linear functionals on bothB andB′.

Note that ifB is a Hilbert space, then the above definition of RKBS coincides with that of an RKHS.
Let (·, ·)B be a bilinear form onB×B′ wherein(f, g∗)B := g∗(f), f ∈ B, g∗ ∈ B′. Theorem 2 in
[26] shows that ifB is an RKBS onX , then there exists a unique functionK : X × X → C called
the reproducing kernel (r.k.) ofB, such that the following hold:

(a1) K(x, ·) ∈ B,K(·, x) ∈ B′, x ∈ X ,

(a2) f(x) = (f,K(·, x))B, f∗(x) = (K(x, ·), f∗)B, f ∈ B, f∗ ∈ B′, x ∈ X .

Note thatK satisfiesK(x, y) = (K(x, ·),K(·, y))B and thereforeK(·, x) andK(x, ·) are reproduc-
ing kernels forB andB′ respectively. WhenB is an RKHS,K is indeed the r.k. in the usual sense.
Though an RKBS has exactly one r.k., different RKBSs may havethe same r.k. (see Example 1) un-
like an RKHS, where no two RKHSs can have the same r.k (by the Moore-Aronszajn theorem [4]).
Due to the lack of inner product inB (unlike in an RKHS), it can be shown that the r.k. for a general
RKBS can be any arbitrary function onX ×X for a finite setX [26]. In order to have a substitute for
inner products in the Banach space setting, [26] consideredRKBSB that are uniformly Fréchet dif-
ferentiable and uniformly convex (referred to as s.i.p. RKBS) as it allows Hilbert space arguments to
be carried over toB—most importantly, an analogue to the Riesz representationtheorem holds (see
Theorem 3)—through the notion ofsemi-inner-product(s.i.p.) introduced by [13]. In the following,
we first present results related to general s.i.p. spaces andthen consider s.i.p. RKBS.

Definition 2 (S.i.p. space). A Banach spaceB is said to be uniformly Fŕechet differentiable if for
all f, g ∈ B, limt∈R,t→0

‖f+tg‖B−‖f‖B

t exists and the limit is approached uniformly forf, g in the
unit sphere ofB. B is said to be uniformly convex if for allǫ > 0, there exists aδ > 0 such that
‖f + g‖B ≤ 2 − δ for all f, g ∈ B with ‖f‖B = ‖g‖B = 1 and ‖f − g‖B ≥ ǫ. B is called an
s.i.p. space if it is both uniformly Fréchet differentiable and uniformly convex.

Note that uniform Fréchet differentiability and uniform convexity are properties of the norm associ-
ated withB. [9, Theorem 3] has shown that ifB is an s.i.p. space, then there exists a unique function
[·, ·]B : B×B → C, called the semi-inner-product such that for allf, g, h ∈ B andλ ∈ C:

(a3) [f + g, h]B = [f, h]B + [g, h]B,

(a4) [λf, g]B = λ[f, g]B, [f, λg]B = λ[f, g]B,

(a5) [f, f ]B =: ‖f‖2
B
> 0 for f 6= 0,
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(a6) (Cauchy-Schwartz)|[f, g]B|2 ≤ ‖f‖2
B
‖g‖2

B
,

and limt∈R,t→0
‖f+tg‖B−‖f‖B

t = Re([g,f ]B)
‖f‖B

, f, g ∈ B, f 6= 0, where Re(α) andα represent the
real part and complex conjugate of a complex numberα. Note that s.i.p. in general do not satisfy
conjugate symmetry,[f, g]B = [g, f ]B for all f, g ∈ B and therefore is not linear in the second
argument, unlessB is a Hilbert space, in which case the s.i.p. coincides with the inner product.

SupposeB is an s.i.p. space. Then for eachh ∈ B, f 7→ [f, h]B defines a continuous linear
functional onB, which can be identified with a unique elementh∗ ∈ B′, called thedual functionof
h. By this definition ofh∗, we haveh∗(f) = (f, h∗)B = [f, h]B, f, h ∈ B. Using the structure of
s.i.p., [9, Theorem 6] provided the following analogue inB to the Riesz representation theorem of
Hilbert spaces.

Theorem 3([9]). SupposeB is an s.i.p. space. Then

(a7) (Riesz representation theorem) For eachg ∈ B′, there exists a uniqueh ∈ B such that
g = h∗, i.e.,g(f) = [f, h]B, f ∈ B and‖g‖B′ = ‖h‖B.

(a8) B′ is an s.i.p. space with respect to the s.i.p. defined by[h∗, f∗]B′ := [f, h]B, f, h ∈ B

and‖h∗‖B′ := [h∗, h∗]
1/2
B′ .

For more details on s.i.p. spaces, we refer the reader to [9].A concrete example of an s.i.p. space
is as follows, which will prove to be useful in Section 5. Let(X ,A , µ) be a measure space and
B := Lp(X , µ) for somep ∈ (1,+∞). It is an s.i.p. space with dualB′ := Lq(X , µ) where

q = p
p−1 . For eachf ∈ B, its dual element inB′ is f∗ = f |f |p−2

‖f‖p−2
Lp(X,µ)

. Consequently, the semi-inner-

product onB is

[f, g]B = g∗(f) =

∫
X fg|g|p−2 dµ

‖g‖p−2
Lp(X ,µ)

. (4)

Having introduced s.i.p. spaces, we now discuss s.i.p. RKBSwhich was studied by [26]. Using the
Riesz representation for s.i.p. spaces (see (a7)), Theorem 9 in [26] shows that ifB is an s.i.p. RKBS,
then there exists a unique r.k.K : X × X → C and a s.i.p. kernelG : X × X → C such that:

(a9) G(x, ·) ∈ B for all x ∈ X ,K(·, x) = (G(x, ·))∗, x ∈ X ,

(a10) f(x) = [f,G(x, ·)]B, f∗(x) = [K(x, ·), f ]B for all f ∈ B, x ∈ X .

It is clear thatG(x, y) = [G(x, ·), G(y, ·)]B, x, y ∈ X . Since s.i.p. in general do not satisfy conju-
gate symmetry,G need not be Hermitian nor pd [26, Section 4.3]. The r.k.K and the s.i.p. kernel
G coincide when span{G(x, ·) : x ∈ X} is dense inB, which is the case whenB is an RKHS [26,
Theorems 2, 10 and 11]. This means whenB is an RKHS, then the conditions (a9) and (a10) reduce
to the well-known reproducing properties of an RKHS with thes.i.p. reducing to an inner product.

4 RKBS Embedding of Probability Measures

In this section, we present our main contributions of deriving and analyzing the RKBS embedding
of probability measures, which generalize the theory of RKHS embeddings. First, we would like to
remind the reader that the RKHS embedding in (1) can be derived by choosingF = {f : ‖f‖H ≤ 1}
in

γF(P,Q) = sup
f∈F

∣∣∣∣
∫

X
f dP−

∫

X
f dQ

∣∣∣∣ .

See [21, 22] for details. Similar to the RKHS case, in Theorem4, we show that the RKBS embed-
dings can be obtained by choosingF = {f : ‖f‖B ≤ 1} in γF(P,Q). Interestingly, thoughB does
not have an inner product, it can be seen that the structure ofsemi-inner-product is sufficient enough
to generate an embedding similar to (1).

Theorem 4. LetB be an s.i.p. RKBS defined on a measurable spaceX withG as the s.i.p. kernel
andK as the reproducing kernel with bothG andK being measurable. LetF = {f : ‖f‖B ≤ 1}
andG be bounded. Then

γK(P,Q) := γF(P,Q) =

∥∥∥∥
∫

X
K(·, x) dP(x)−

∫

X
K(·, x) dQ(x)

∥∥∥∥
B′

. (5)
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Based on Theorem 4, it is clear thatP can be seen as being embedded intoB′ as P 7→∫
X K(·, x) dP(x) andγK(P,Q) is the distance between the embeddings ofP andQ. Therefore,

we arrive at an embedding which looks similar to (1) and coincides with (1) whenB is an RKHS.

Given these embeddings, two questions that need to be answered for these embeddings to be practi-
cally useful are: (⋆) When is the embedding injective? and (⋆⋆) CanγK(P,Q) in (5) be estimated
consistently and computed efficiently from finite random samples drawn i.i.d. fromP andQ? The
significance of (⋆) is that if (3) is injective, then such an embedding can be used to differentiate
between differentP andQ, which can then be used in applications like two-sample tests to differen-
tiate betweenP andQ based on samples drawn i.i.d. from them if the answer to (⋆⋆) is affirmative.
These questions are answered in the following sections.

Before that, we show how these questions are important in binary classification. Following [20], it
can be shown thatγK is the negative of the optimal risk associated with a Parzen window classifier
in B′, that separates the class-conditional distributionsP andQ (see Section A.2 for details). This
means that if (3) is not injective, then the maximum risk is attained forP 6= Q, i.e., distinct distribu-
tions are not classifiable. Therefore, the injectivity of (3) is of primal importance in applications. In
addition, the question in (⋆⋆) is critical as well, as it relates to the consistency of the Parzen window
classifier.

4.1 When is (3) injective?

The following result provides various characterizations for the injectivity of (3), which are similar
(but more general) to those obtained for the injectivity of (1) and coincide with the latter whenB is
an RKHS.

Theorem 5(Injectivity of γK). SupposeB is an s.i.p. RKBS defined on a topological spaceX with
K andG as its r.k. and s.i.p. kernel respectively. Then the following hold:

(a) LetX be a Polish space that is also locally compact Hausdorff. SupposeG is bounded and
K(x, ·) ∈ C0(X ) for all x ∈ X . Then (3) is injective ifB is dense inC0(X ).
(b) Suppose the conditions in (a) hold. Then (3) is injectiveif B is dense inLp(X , µ) for any Borel
probability measureµ onX and somep ∈ [1,∞).

Since it is not easy to check for the denseness ofB in C0(X ) orLp(X , µ), in Theorem 6, we present
an easily checkable characterization for the injectivity of (3) whenK is bounded continuous and
translation invariant onRd. Note that Theorem 6 generalizes the characterization (see[21, 22]) for
the injectivity of RKHS embedding (in (1)).

Theorem 6 (Injectivity of γK for translation invariantK). Let X = Rd. SupposeK(x, y) =
ψ(x − y), whereψ : Rd → R is of the formψ(x) =

∫
Rd e

i〈x,ω〉 dΛ(ω) andΛ is a finite complex-
valued Borel measure onRd. Then (3) is injective ifsupp(Λ) = Rd. In addition ifK is symmetric,
then the converse holds.

Remark 7. If ψ in Theorem 6 is a real-valued pd function, then by Bochner’s theorem,Λ has to be
real, nonnegative and symmetric, i.e.,Λ(dω) = Λ(−dω). Sinceψ need not be a pd function forK
to be a real, symmetric r.k. ofB, Λ need not be nonnegative. More generally, ifψ is a real-valued
function onRd, thenΛ is conjugate symmetric, i.e.,Λ(dω) = Λ(−dω). An example of a translation
invariant, real and symmetric (but not pd) r.k. that satisfies the conditions of Theorem 6 can be
obtained withψ(x) = (4x6 + 9x4 − 18x2 + 15) exp(−x2). See Example 3 for more details.

4.2 Consistency Analysis

Consider a two-sample test, wherein given two sets of randomsamples,{Xj}mj=1 and {Yj}nj=1
drawn i.i.d. from distributionsP andQ respectively, it is required to test whetherP = Q or not.
Given a metric,γK on P(X ), the problem can equivalently be posed as testing forγK(P,Q) = 0
or not, based on{Xj}mj=1 and{Yj}nj=1, in which case,γK(P,Q) is estimated based on these random
samples. For the test to be meaningful, it is important that this estimate ofγK is consistent. [10]
showed thatγK(Pm,Qn) is a consistent estimator ofγK(P,Q) whenB is an RKHS, wherePm :=
1
m

∑m
j=1 δXj , Qn := 1

n

∑n
j=1 δYj and δx represents the Dirac measure atx ∈ X . Theorem 9

generalizes the consistency result in [10] by showing thatγK(Pm,Qn) is a consistent estimator of

5



γK(P,Q) and the rate of convergence isO(m(1−t)/t+n(1−t)/t) if B′ is of typet, 1 < t ≤ 2. Before
we present the result, we define thetypeof a Banach space,B [2, p. 303].
Definition 8 (Rademacher type ofB). Let 1 ≤ t ≤ 2. A Banach spaceB is said to be oft-
Rademacher (or, more shortly, oftype t) if there exists a constantC∗ such that for anyN ≥ 1

and any{fj}Nj=1 ⊂ B: (E‖∑N
j=1 ̺jfj‖tB)1/t ≤ C∗(

∑N
j=1 ‖fj‖tB)1/t, where {̺j}Nj=1 are

i.i.d. Rademacher (symmetric±1-valued) random variables.

Clearly, every Banach space is of type 1. Since having typet′ for t′ > t implies having typet, let us
definet∗(B) := sup{t : B has typet}.

Theorem 9(Consistency ofγK(Pm,Qn)). LetB be an s.i.p. RKBS. Assumeν := sup{
√
G(x, x) :

x ∈ X} <∞. Fix δ ∈ (0, 1). Then with probability1−δ over the choice of samples{Xj}mj=1
i.i.d.∼ P

and{Yj}nj=1
i.i.d.∼ Q, we have

|γK(Pm,Qn)− γK(P,Q)| ≤ 2C∗ν
(
m

1−t
t + n

1−t
t

)
+
√
18ν2 log(4/δ)

(
m− 1

2 + n− 1
2

)
,

wheret = t∗(B′) andC∗ is some universal constant.

It is clear from Theorem 9 that ift∗(B′) ∈ (1, 2], thenγK(Pm,Qn) is a consistent estimator of
γK(P,Q). In addition, the best rate is obtained ift∗(B′) = 2, which is the case ifB is an RKHS. In
Section 5, we will provide examples of s.i.p. RKBSs that satisfy t∗(B′) = 2.

4.3 Computation ofγK(P,Q)

We now consider the problem of computingγK(P,Q) and γK(Pm,Qn). Define λ∗P :=∫
X K(·, x) dP(x). Consider

γ2K(P,Q) = ‖λ∗P − λ∗Q‖2B′

(a5)
= [λ∗P − λ∗Q, λ

∗
P − λ∗Q]B′

(a3)
= [λ∗P, λ

∗
P − λ∗Q]B′ − [λ∗Q, λ

∗
P − λ∗Q]B′

=
[ ∫

X
K(·, x) dP(x), λ∗P − λ∗Q

]
B′

−
[ ∫

X
K(·, x) dQ(x), λ∗P − λ∗Q

]
B′

(12)
=

∫

X
[K(·, x), λ∗P − λ∗Q]B′ dP(x) −

∫

X
[K(·, x), λ∗P − λ∗Q]B′ dQ(x)

=

∫

X

[
K(·, x),

∫

X
K(·, y) d(P−Q)(y)

]
B′
d(P−Q)(x). (6)

(6) is not reducible as the s.i.p. is not linear in the second argument unlessB is a Hilbert space. This
meansγK(P,Q) is not representable in terms of the kernel function,K(x, y) unlike in the case of
B being an RKHS, in which case the s.i.p. in (6) reduces to an inner product providing

γ2K(P,Q) =

∫ ∫

X
K(x, y) d(P−Q)(x) d(P−Q)(y).

Since this issue holds for anyP,Q ∈ P(X ), it also holds forPm andQn, which meansγK(Pm,Qn)
cannot be computed in a closed form in terms of the kernel,K(x, y) unlike in the case of an RKHS
whereγK(Pm,Qn) can be written as a simple V-statistic that depends only onK(x, y) computed
at {Xj}mj=1 and{Yj}nj=1. This is one of the main drawbacks of the RKBS approach where the
s.i.p. structure does not allow closed form representations in terms of the kernelK (also see [26]
where regularization algorithms derived in RKBS are not solvable unlike in an RKHS), and therefore
could limit its practical viability. However, in the following section, we present non-trivial examples
of s.i.p. RKBSs for whichγK(P,Q) andγK(Pm,Qn) can be obtained in closed forms.

5 Concrete Examples of RKBS Embeddings

In this section, we present examples of RKBSs and then derivethe correspondingγK(P,Q) and
γK(Pm,Qn) in closed forms. To elaborate, we present three examples that cover the spectrum:
Example 1 deals with RKBS (in fact a family of RKBSs induced bythe same r.k.) whose r.k. is pd,
Example 2 with RKBS whose r.k. is not symmetric and thereforenot pd and Example 3 with RKBS
whose r.k. is symmetric but not pd. These examples show that the Banach space embeddings result
in richer metrics onP(X ) than those obtained through RKHS embeddings.
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Example 1 (K is positive definite). Let µ be a finite nonnegative Borel measure onRd. Then for
any1 < p <∞ with q = p

p−1

B
pd
p (Rd) :=

{
fu(x) =

∫

Rd

u(t)ei〈x,t〉 dµ(t) : u ∈ Lp(Rd, µ), x ∈ Rd
}
, (7)

is an RKBS withK(x, y) = G(x, y) = (µ(Rd))(p−2)/p
∫
Rd e

−i〈x−y,t〉 dµ(t) as the r.k. and

γK(P,Q) =
∥∥∥
∫

Rd

ei〈x,·〉 d(P−Q)(x)
∥∥∥
Lq(Rd,µ)

= ‖φP − φQ‖Lq(Rd,µ) . (8)

First note thatK is a translation invariant pd kernel onRd as it is the Fourier transform of a
nonnegative finite Borel measure,µ, which follows from Bochner’s theorem. Therefore, though the
s.i.p. kernel and the r.k. of an RKBS need not be symmetric, the space in (7) is an interesting example
of an RKBS, which is induced by a pd kernel. In particular, it can be seen that many RKBSs (B

pd
p (Rd)

for any1 < p < ∞) have the same r.k (ignoring the scaling factor which can be made one for any
p by choosingµ to be a probability measure). Second, note thatB

pd
p is an RKHS whenp = q = 2

and therefore (8) generalizesγk(P,Q) = ‖φP − φQ‖L2(Rd,µ). By Theorem 6, it is clear thatγK in
(8) is a metric onP(Rd) if and only ifsupp(µ) = Rd. Refer to Section A.7 for an interpretation of
B

pd
p (Rd) as a generalization of Sobolev space [25, Chapter 10].

Example 2(K is not symmetric). Letµ be a finite nonnegative Borel measure such that its moment-
generating function, i.e.,Mµ(x) :=

∫
Rd e

〈x,t〉 dµ(t) exists. Then for any1 < p <∞ with q = p
p−1

B
ns
p (R

d) :=

{
fu(x) =

∫

Rd

u(t)e〈x,t〉 dµ(t) : u ∈ Lp(Rd, µ), x ∈ Rd
}

is an RKBS withK(x, y) = G(x, y) = (Mµ(qx))
(p−2)/pMµ(x(q − 1) + y) as the r.k. Suppose

P andQ are such thatMP andMQ exist. ThenγK(P,Q) = ‖
∫
Rd e

〈x,·〉 d(P − Q)(x)‖Lq(Rd,µ) =
‖MP −MQ‖Lq(Rd,µ), which is the weightedLq distance between the moment-generating functions

of P andQ. It is easy to see that ifsupp(µ) = Rd, thenγK(P,Q) = 0 ⇒ MP = MQ a.e. ⇒ P =
Q, which meansγK is a metric onP(Rd). Note thatK is not symmetric (forq 6= 2) and therefore
is not pd. Whenp = q = 2,K(x, y) = Mµ(x + y) is pd andBns

p (R
d) is an RKHS.

Example 3 (K is symmetric but not positive definite). Let ψ(x) =

Ae−x
2 (

4x6 + 9x4 − 18x2 + 15
)

withA := (1/243)
(
4π2/25

)1/6
. Then

B
snpd
3
2

(R) :=

{
fu(x) =

∫

R

(x− t)2e−
3(x−t)2

2 u(t) dt : u ∈ L
3
2 (R), x ∈ R

}

is an RKBS with r.k.K(x, y) = G(x, y) = ψ(x− y). Clearly,ψ and thereforeK are not pd (though

symmetric onR) as ψ̂(x) = −e−
(x−y)2

4

34992
√
2

(
x6 − 39x4 + 216x2 − 324

)
is not nonnegative at every

x ∈ R. Refer to Section A.8 for the derivation ofK and ψ̂. In addition,γK(P,Q) = ‖
∫
R
θ(· −

x) d(P − Q)(x)‖Lq(R) = ‖(θ̂ (φP − φQ))
∨‖Lq(R), whereθ(t) = t2e−

3
2 t

2

. Sincesupp(θ̂) = R, we

haveγK(P,Q) = 0 ⇒ (θ̂ (φP − φQ))
∨ = 0 ⇒ θ̂ (φP − φQ) = 0 ⇒ φP = φQ a.e., which implies

P = Q and thereforeγK is a metric onP(R).
So far, we have presented different examples of RKBSs, wherein we have demonstrated the nature
of the r.k., derived the Banach space embeddings in closed form and studied the conditions under
which it is injective. These examples also show that the RKBSembeddings result in richer distance
measures on probabilities compared to those obtained by theRKHS embeddings—an advantage
gained by moving from Hilbert to Banach spaces. Now, we consider the problem of computing
γK(Pm,Qn) in closed form and its consistency. In Section 4.3, we showedthatγK(Pm,Qn) does
not have a nice closed form expression unlike in the case ofB being an RKHS. However, in the fol-
lowing, we show that forK in Examples 1–3 (more generally forK in Corollary 15),γK(Pm,Qn)
has a closed form expression for certain choices ofq. Let us consider the estimation ofγK(P,Q):

γqK(Pm,Qn) =

∥∥∥∥
∫

X
b(x, ·) d(Pm −Qn)(x)

∥∥∥∥
q

Lq(X ,µ)
=

∫

X

∣∣∣
∫

X
b(x, t) d(Pm −Qn)(x)

∣∣∣
q

dµ(t)

=

∫

X

∣∣∣ 1
m

m∑

j=1

b(Xj , t)−
1

n

n∑

j=1

b(Yj , t)
∣∣∣
q

dµ(t), (9)

7



whereb(x, t) = ei〈x,t〉 in Example 1,b(x, t) = e〈x,t〉 in Example 2 andb(x, t) = θ(x − t) with
q = 3 andµ being the Lebesgue measure in Example 3. Since the duals of RKBSs considered in
Examples 1–3 are of of typemin(q, 2) for 1 ≤ q ≤ ∞ [2, p. 304], by Theorem 9,γK(Pm,Qn)

estimatesγK(P,Q) consistently at a convergence rate ofO(m
max(1−q,−1)

min(q,2) + n
max(1−q,−1)

min(q,2) ) for q ∈
(1,∞), with the best rate ofO(m−1/2 + n−1/2) attainable whenq ∈ [2,∞). This means for
q ∈ (2,∞), the same rate as attainable by the RKHS can be achieved. Now,the problem reduces
to computingγK(Pm,Qn). Note that (9) cannot be computed in a closed form for allq—see the
discussion in Section A.9 about approximatingγK(Pm,Qn). However, whenq = 2, (9) can be
computed very efficiently in closed form (in terms ofK) as a V-statistic [10], given by

γ2K(Pm,Qn) =
m∑

j,l=1

K(Xj, Xl)

m2
+

n∑

j,l=1

K(Yj, Yl)

n2
− 2

m∑

j=1

n∑

l=1

K(Xj, Yl)

mn
. (10)

More generally, it can be shown that ifq = 2s, s ∈ N, then (9) reduces to

γqK(Pm,Qn) =

∫

X

q· · ·
∫

X

A(x1,...,xq)︷ ︸︸ ︷∫

X

s∏

j=1

b(x2j−1, t)b(x2j , t) dµ(t)

q∏

j=1

d(Pm −Qn)(xj) (11)

for which closed form computation is possible for appropriate choices ofb and µ. See Sec-
tion A.10 for the derivation of (11). Forb andµ as in Example 1, we haveA(x1, . . . , xq) =

(µ(Rd))
2−p
p K

(∑s
j=1 x2j−1,

∑s
j=1 x2j

)
, while for b and µ as in Example 2, we have

A(x1, . . . , xq) = Mµ(
∑q
j=1 xj). By appropriately choosingθ andµ in Example 3, we can ob-

tain a closed form expression forA(x1, . . . , xq)—see Section A.11 for details. Note that choosing
s = 1 in (11) results in (10). (11) shows thatγqK(Pm,Qn) can be computed in a closed form in
terms ofA at a complexity ofO(mq), assumingm = n, which means the least complexity is ob-
tained forq = 2. The above discussion shows that for appropriate choices ofq, i.e.,q ∈ (2,∞), the
RKBS embeddings in Examples 1–3 are useful in practice asγK(Pm,Qn) is consistent and has a
closed form expression. However, the drawback of the RKBS framework is that the computation of
γK(Pm,Qn) is more involved than its RKHS counterpart.

6 Conclusion & Discussion

With a motivation to study the advantages/disadvantages ofgeneralizing Hilbert space learning algo-
rithms to Banach spaces, in this paper, we generalized the notion of RKHS embedding of probability
measures to Banach spaces, in particular RKBS that are uniformly Fréchet differentiable and uni-
formly convex—note that this is equivalent to generalizinga RKHS based Parzen window classifier
to RKBS. While we showed that most of results in RKHS like injectivity of the embedding, con-
sistency of the Parzen window classifier, etc., nicely generalize to RKBS yielding richer distance
measures on probabilities, the generalized notion is less attractive in practice compared to its RKHS
counterpart because of the computational disadvantage associated with it. Since most of the existing
literature on generalizing kernel methods to Banach spacesdeal with more complex algorithms than
a simple Parzen window classifier that is considered in this paper, we believe that most of these
algorithms may have limited practical applicability, though they are theoretically appealing. This,
therefore raises an important open problem of developing computationally efficient Banach space
based learning algorithms.
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A Appendix: Proofs

We provide proofs for the results in Sections 4 and 5.

A.1 Proof of Theorem 4

The following supplementary result will be useful to prove Theorem 4.

Lemma 10. LetB be an s.i.p. RKBS defined on a measurable spaceX with G as the s.i.p. kernel
andK as the reproducing kernel with bothG andK being measurable andG bounded. Supposeµ
be a finite signed measure onX . Then, for anyf ∈ B, we have

∫

X
f(x) dµ(x) =

∫

X
[K(·, x), f∗]

B′ dµ(x) =

[∫

X
K(·, x) dµ(x), f∗

]

B′

. (12)

Proof. Consider Tµ[f ] =
∫
X f(x) dµ(x). Since B is an s.i.p. RKBS, then by (a10)

there exists a uniqueG such thatf(x) = [f,G(x, ·)]B
(a8),(a9)

= [K(·, x), f∗]B′ . There-

fore, we have |Tµ[f ]|
(a10)
=

∣∣∫
X [f,G(x, ·)]B dµ(x)

∣∣ ≤
∫
X |[f,G(x, ·)]B| d|µ|(x)

(a6)

≤
‖f‖B

∫
X
√
[G(x, ·), G(x, ·)]B d|µ|(x)

(a10)
= ‖f‖B ·

∫
X
√
G(x, x) d|µ|(x) < ∞, which means

Tµ ∈ B′. By (a7), there exists a uniqueλµ ∈ B such thatTµ = λ∗µ, i.e.,Tµ[f ] = [f, λµ]B, f ∈ B.

In other words,
∫
X [f,G(x, ·)]B dµ(x) =

∫
X f(x) dµ(x) = Tµ[f ] = [f, λµ]B

(a8)
=

[
λ∗µ, f

∗]
B′ .

Choosingf = K(y, ·) ∈ B for somey ∈ X givesλ∗µ(y)
(a10)
= [K(y, ·), λµ]B =

∫
X K(y, x) dµ(x).

This meansλ∗µ =
∫
X K(·, x) dµ(x) and the result follows.

Note that whenB is an RKHS, we haveG = K and therefore
∫

X
f(x) dµ(x) =

∫

X
〈f,G(x, ·)〉B dµ(x) =

∫

X
〈G(x, ·), f〉B dµ(x) =

∫

X
〈K(x, ·), f〉B dµ(x)

=

〈∫

X
K(·, x) dµ(x), f

〉

B

.

Proof of Theorem 4:Consider

γF(P,Q) = sup
‖f‖B≤1

∣∣∣∣
∫

X
f dP−

∫

X
f dQ

∣∣∣∣
(12)
= sup

‖f‖B≤1

∣∣∣∣
[∫

X
K(·, x) d(P−Q)(x), f∗

]

B′

∣∣∣∣

(a8)
= sup

‖f∗‖
B′≤1

∣∣∣∣
[∫

X
K(·, x) dP(x)−

∫

X
K(·, x) dQ(x), f∗

]

B′

∣∣∣∣

(a6)
=

∥∥∥∥
∫

X
K(·, x) dP(x) −

∫

X
K(·, x) dQ(x)

∥∥∥∥
B′

,

therefore proving the result.

A.2 γK(P,Q) and the Parzen window classifier

Consider the binary classification problem withX being aX -valued random variable,Y being
a {−1, 1}-valued random variable and the product space,X × {−1, 1}, being endowed with an
induced probability measure,η. A discriminant function,f is a real-valued measurable function on
X , whose sign is used to make a classification decision. Given aloss functionL : R×{−1, 1} → R,
the goal is to choose anf that minimizes the risk associated withL, given as

RL,η(f) :=

∫

X×{−1,1}
L(f(x), y) dη(x, y) = π

∫

X
L(f, 1) dP+ (1− π)

∫

X
L(f,−1) dQ,

with the optimalL-risk defined as

R∗
L,η,F := inf

f∈F

RL,η(f),

9



whereF is chosen to be the set of all measurable functions onX , P := η(·|Y = 1), Q := η(·|Y =
−1) andπ := η(X , Y = 1), i.e.,P andQ represent the class conditional distributions andπ is the
prior distribution of class1. Choosing

L(t, 1) = −t/π, L(t,−1) = t/(1− π) andF = {f : ‖f‖B ≤ 1}

gives
γK(P,Q) = −R∗

L,η,F,

i.e.,γK(P,Q) is the negative of the optimalL-risk associated with a classifier (we show below that
this is a Parzen window classifier) that separates the class-conditional distributions,P andQ. It is
easy to see that sinceR∗

L,η,F = 0 is the maximum risk attainable, if (3) is not injective, thenthe
maximum risk is attained forP 6= Q, i.e., distinct distributions are not classifiable. Therefore, the
injectivity of (3) is of primal importance in applications.Note that for these choices ofL andF,
R∗
L,η,F is attained atf∗ = (γK(P,Q))−1

∫
X K(·, x) d(P − Q)(x) , which is clearly the Parzen

window classifier as sign(f∗(x)) = 1 if
∫
X K(x, y) dP(y) >

∫
X K(x, y) dQ(y) and−1, otherwise.

This means, the question in (⋆⋆) is critical as well, as it relates to the consistency of the Parzen
window classifier.

A.3 Proof of Theorem 5

(a) We first show that ifG is bounded andK(x, ·) ∈ C0(X ), ∀x ∈ X , thenB ⊂ C0(X ). SinceG
is bounded, we have|f(x)| = |[f,G(x, ·)]B| ≤ ‖f‖B

√
G(x, x) ≤ ‖f‖B‖G‖∞ for all f ∈ B and

x ∈ X , which means‖f‖∞ ≤ ‖G‖∞‖f‖B, ∀ f ∈ B. Here‖G‖∞ := sup{
√
G(x, x) : x ∈ X}.

This means id: B → ℓ∞(X ) is well-defined and‖id : B → ℓ∞(X )‖ ≤ ‖G‖∞, whereℓ∞(X ) is the
space of bounded functions onX . Let us defineBpre := span{K(x, ·) : x ∈ X}. SinceK(x, ·) ∈
C0(X ), ∀x ∈ X , it is clear thatBpre ⊂ C0(X ). Theorem 2 in [26] shows thatBpre is dense inB,
which means for anyf ∈ B, there exists a sequence{fn} ⊂ Bpre such thatlimn→∞ ‖f − fn‖B =
0 and the continuity of id: B → ℓ∞(X ) then yieldslimn→∞ ‖f − fn‖∞ = 0. The completeness
of C0(X ) shows thatC0(X ) is a closed subspace ofℓ∞(X ), and sincefn ∈ C0(X ), ∀n, we can
conclude thatf ∈ C0(X ). Therefore, the inclusion id: B → C0(X ) is well-defined and continuous.

We now show that ifB is dense inC0(X ), then (3) is injective. To show this, we first obtain an
equivalent representation for the denseness ofB in C0(X ) and then show that if (3) is not injective,
thenB is not dense inC0(X ), thereby proving the result. By the Hahn-Banach theorem [15, Theo-
rem 3.5],B is dense inC0(X ) if and only ifB⊥ = {µ ∈Mb(X ) : ∀ f ∈ B,

∫
X f dµ = 0} = {0},

whereMb(X ) is the space of all bounded complex-valued Borel measures onX . Let us assume that
µ 7→

∫
X K(·, x) dµ(x), µ ∈Mb(X ) is not injective. This means there existsµ ∈Mb(X )\{0} such

that
∫
X K(·, x) dµ(x) = 0, which means

∫
X f(x) dµ(x) = [

∫
X K(·, x) dµ(x), f∗]B′ = 0 for any

f ∈ B, where we used (12). In other words,B⊥ 6= {0}, which meansB is not dense inC0(X ).
Therefore, ifB is dense inC0(X ), thenµ 7→

∫
X K(·, x) dµ(x), µ ∈ Mb(X ) is injective, which

means (3) is injective.
(b) Suppose the conditions in(a) hold. We claim thatB is dense inC0(X ) if and only ifB is dense
in Lp(X , µ) for all Borel probability measuresµ onX and somep ∈ [1,∞). If this claim is true,
then clearly the result in Theorem 5(b) follows. The proof ofthe claim is as follows, which is essen-
tially based on [5, Theorem 1].
(⇐ ) SupposeB is dense inC0(X ). This means, for anyǫ > 0 and for anyg ∈ C0(X ), there exists
f ∈ B such that‖f − g‖∞ ≤ ǫ

2 . SinceX is a locally compact Hausdorff space,C0(X ) is dense
in Lp(X , µ) for all Borel probability measuresµ on X and allp ∈ [1,∞). This implies, for any
ǫ > 0 and for anyh ∈ Lp(X , µ), there existsg ∈ C0(X ) such that‖g − h‖Lp(X ,µ) ≤ ǫ

2 . Consider
‖f − h‖Lp(X ,µ) ≤ ‖f − g‖Lp(X ,µ) + ‖g − h‖Lp(X ,µ) ≤ ǫ

2 + ǫ
2 = ǫ, which holds for anyǫ and any

f ∈ Lp(X , µ). Therefore,B is dense inLp(X , µ) for all Borel probability measuresµ onX and all
p ∈ [1,∞).
(⇒ ) SupposeB is not dense inC0(X ). Then, by the Hahn-Banach theorem, there exists a
T ∈ (C0(X ))′, T 6= 0 such thatT (f) = 0 for all f ∈ B. [5, Theorem 7] showed that for any
T ∈ (C0(X ))′, there exists a probability measureµ on X and a unique functionh ∈ L∞(X , µ)
such thatT (f) =

∫
X f(x)h(x) dµ(x), f ∈ C0(X ) with ‖T ‖ = ‖h‖L∞(X ,µ). SinceT 6= 0, we

haveh 6= 0. In addition, sinceµ is a probability measure,h ∈ Lq(X , µ), which means there exists
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h 6= 0, h ∈ (Lp(X , µ))′ such that
∫
X f(x)h(x) dµ(x) = 0. Therefore,B is not dense inLp(X , µ)

for some Borel probability measureµ and anyp ∈ [1,∞).

A.4 Proof of Theorem 6

To prove the sufficiency in Theorem 6, we need some supplementary results. The following lemma
is a standard result, popularly known as the convolution theorem. See [21, Theorem 22] for a proof.

Lemma 11. Let µ be a finite Borel measure andf be a bounded function onRd. Supposef is
written as

f(x) =

∫

Rd

ei〈x,ω〉 dΛ(ω),

with a finite Borel measureΛ onRd. Definef ∗ µ :=
∫
Rd f(· − t) dµ(t). Then

f̂ ∗ µ = (2π)d/2 (µ̂Λ) ,

where the right hand side is a finite Borel measure1 and the equality holds as a tempered distribution.

Using Lemma 11, in the following, we obtain an alternate representation forγK(P,Q)—see (5)—
whenK satisfies the assumptions in Theorem 6. This result uses the same idea as used in [21,
Lemma 13] whereB is assumed to be an RKHS.

Lemma 12(Fourier representation ofγK). SupposeK satisfies the conditions in Theorem 6. Then

γK(P,Q) = (2π)d/2
∥∥∥
(
(φP − φQ)Λ

)∨∥∥∥
B′
, (14)

where(φP − φQ)Λ represents a finite Borel measure defined by (13).

Proof. Consider ∫

Rd

K(·, x) dP(x) =
∫

Rd

ψ(· − x) dP(x) = ψ ∗ P.

By Lemma 11, we havêψ ∗ P = (2π)d/2(P̂Λ), which meansψ∗P = (2π)d/2(P̂Λ)∨, whereP̂(ω) =∫
Rd e

−i〈ω,x〉 dP(x), ω ∈ Rd. Note thatP̂ = φP. Therefore, substituting for
∫
Rd K(·, x) dP(x) in

γK(P,Q) yields (14).

Lemma 13([21, Proposition 16]). Letθ be a bounded continuous function onRd. SupposeθΛ = 0,
whereΛ is defined as in Theorem 6 andθΛ is a finite Borel measure defined by (13). Thensupp(θ) ⊂
cl(Rd\supp(Λ)).

Proof of Theorem 6(⇐ ): We show that if supp(Λ) = Rd, thenγK(P,Q) is a metric onP(X ),
i.e., (3) is injective. LetγK(P,Q) = 0, which by Lemma 12 implies

(
(φP − φQ)Λ

)∨
= 0 , i.e.,

(φP − φQ)Λ = 0. Defineθ := φP − φQ so thatθΛ = 0. By Lemma 13, this implies supp(θ) ⊂
Rd\supp(Λ). Therefore, if supp(Λ) = Rd, thenθ = 0 a.e., i.e.,φP = φQ a.e. SinceφP andφQ are
uniformly continuous onRd, we haveP = Q, i.e.,γK is a metric onP(X ).

(⇒ ) SupposeK is real and symmetric. We need to show that if (3) is injective, then supp(Λ) = Rd.
First note that sinceK is real and symmetric, we have thatΛ is also real and symmetric, i.e.,
Λ(dω) = Λ(−dω). Suppose supp(Λ) ( Rd. Then there exists an open setU ⊂ Rd such that
Λ(U) = 0. This implies, there existsβ ∈ Rd++ andω0 > β (element-wise inequality) such that
[ω0 − β, ω0 + β] ⊂ U , whereω0 = (ω0,1, . . . , ω0,d) andβ = (β1, . . . , βd). Define

θ := α(fβ,ω0 + fβ,−ω0), α ∈ R\{0},
1The finite Borel measure in (13) is defined in the following sense. Letµ be a finite Borel measure andf

be a bounded measurable function onRd. We then define a finite Borel measurefµ by

(fµ)(E) =

∫
Rd

1E(x)f(x)dµ(x), (13)

whereE is an arbitrary Borel set and1E is its indicator function.
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wherefβ,ω0 ∈ C∞(Rd) is the following function supported in[ω0 − β, ω0 + β]:

fβ,ω0(ω) =

d∏

j=1

hβj ,ω0,j (ωj)

with

ha,b(y) := 1[−a,a](y − b) e
− a2

a2−(y−b)2 ,

ω = (ω1, . . . , ωd) andC∞(Rd) is the space of all infinitely differentiable functions onRd. Letα be
such that

0 < |α| ≤ Cl

2 supx

∣∣∣
∏d
j=1 h

∨
βj,0

(xj)(1 + |xj |2)l cos(〈ω0, x〉)
∣∣∣
,

whereCl =
∏d
j=1

(∫
R
(1 + |xj |2)−l dxj

)−1
. From the definition ofθ, it is clear that supp(θ) =

[−ω0 − β,−ω0 + β] ∪ [ω0 − β, ω0 + β] is compact. In addition, supp(θ) = Rd\supp(Λ). Also, it
is easy to check thatθ ∈ L1(Rd)∩L2(Rd) andθ∨ ∈ L1(Rd)∩L2(Rd). Note that, by construction,∫
Rd θ

∨(x) dx = (2π)d/2θ(0) = 0. Let Q be a probability measure onRd with densityq(x) =

Cl
∏d
j=1(1 + |xj |2)−l, l ∈ N andx = (x1, . . . , xd). Definep := q + θ∨. Note thatp ∈ L1(Rd),∫

Rd p(x) dx = 1. It can be verified thatp(x) ≥ 0, ∀x ∈ Rd. Therefore,p represents a probability
density function corresponding to some probability measureP. Consider

∫
Rd ψ(·−x) d(P−Q)(x) =∫

Rd ψ(·−x)θ∨(x) dx = [Λθ]∨ = 0, which means there existsP 6= Q such that
∫
Rd ψ(·−x) dP(x) =∫

Rd ψ(· − x) dQ(x), which implies (3) is not injective.

A.5 Proof of Theorem 9

Note that|γK(Pm,Qn) − γK(P,Q)| ≤ γK(Pm,P) + γK(Qn,Q). Now, let us consider bounding
γK(Pm,P). By invoking concentration (McDiarmid’s inequality), symmetrization and concentra-
tion for γK(Pm,P), we have

γK(Pm,P) ≤
2

m
E
[∥∥∥

m∑

j=1

̺jK(·, Xj)
∥∥∥
B′

∣∣∣ {Xj}mj=1

]
+

√
18ν2

m
log

4

δ
.

Note that E̺‖
∑m
j=1 ̺jK(·, Xj)‖B′ ≤ (E̺‖

∑m
j=1 ̺jK(·, Xj)‖tB′)1/t, 1 ≤ t ≤

2, which follows from Jensen’s inequality, whereE̺‖
∑m
j=1 ̺jK(·, Xj)‖B′ :=

E[‖
∑m
j=1 ̺jK(·, Xj)‖B′ | {Xj}mj=1]. SinceB′ is of type t := t∗(B′), there exists a univer-

sal constantC∗ such that
(
E̺
∥∥∥

m∑

j=1

̺jK(·, Xj)
∥∥∥
t

B′

)1/t
≤ C∗

( m∑

j=1

‖K(·, Xj)‖tB′

)1/t (a9)
= C∗

( m∑

j=1

‖(G(Xj , ·))∗‖tB′

)1/t

(a8)
= C∗

( m∑

j=1

‖G(Xj , ·)‖tB
)1/t

= C∗
( m∑

j=1

(G(Xj , Xj))
t/2
)1/t

≤ C∗νm1/t,

which meansγK(Pm,P) ≤ 2C∗νm(1−t)/t +
√
18ν2m−1 log(4/δ). Carrying out similar analysis

for γK(Qn,Q) gives the desired result.

A.6 Proofs of Examples 1–3

Examples 1–3 can be obtained as special cases of Corollary 15, which is proved using the following
result by [26, Theorem 10].

Theorem 14([26]). LetW be an s.i.p. space andΦ : X → W such that

cl(spanΦ(X )) = W, cl(spanΦ∗(X )) = W
′,

whereΦ∗ : X → W
′ is defined asΦ∗(x) = (Φ(x))∗, x ∈ X . ThenB := {[u,Φ(·)]

W
: u ∈ W}

equipped with
[[u,Φ(·)]

W
, [v,Φ(·)]

W
]
B
:= [u, v]

W

12



andB′ := {[Φ(·), u]
W

: u ∈ W} with

[[Φ(·), u]
W
, [Φ(·), v]

W
]
B′ := [v, u]

W

are s.i.p. RKBSs, whereB′ is the dual ofB with the bilinear form([u,Φ(·)]
W
, [Φ(·), v]

W
)
B

:=
[u, v]W, u, v ∈ W. Moreover, the s.i.p. kernelG ofB is given by

G(x, y) = [Φ(x),Φ(y)]
W
, x, y ∈ X ,

which coincides with its reproducing kernel,K.

As a corollary to Theorem 14, we obtain the following result.
Corollary 15. Let (X ,A , µ) be a measure space. Then for any1 < p < ∞, 1 < q < ∞,
p−1 + q−1 = 1,

Bp(X ) :=

{
fu(x) =

∫

X
u(t)b(x, t) dµ(t) : u ∈ Lp(X , µ), x ∈ X

}

equipped with

[fu, fv]Bp
:= [u, v]Lp(X ,µ) =

∫
Rd uv|v|p−2 dµ

‖v‖p−2
Lp(Rd,µ)

,

and

B
′
p(X ) :=

{
f∗
u(x) =

∫

X

b(x, t)|b(x, t)|q−2u(t)|u(t)|p−2

‖b(x, ·)‖q−2
Lq(X ,µ)‖u‖

p−2
Lp(X ,µ)

dµ(t) : u ∈ Lp(X , µ), x ∈ X
}

with [f∗
u , f

∗
v ]B′

p
:= [v, u]Lp(X ,µ) are s.i.p. RKBSs with

K(x, y) = G(x, y) =

∫

X

b(x, t)|b(x, t)|q−2

‖b(x, ·)‖q−2
Lq(X ,µ)

b(y, t) dµ(t)

as the reproducing kernel (also the s.i.p. kernel), whereb(x, ·) ∈ Lq(X , µ), ∀x ∈ X ,

cl(span{b(x, ·) : x ∈ X}) = Lq(X , µ) and cl

(
span

{
b(x,·)|b(x,·)|q−2

‖b(x,·)‖q−2
Lq(X,µ)

: x ∈ X
})

= Lp(X , µ).
Moreover,

γK(P,Q) =

∥∥∥∥
∫

X
b(x, ·) dP(x) −

∫

X
b(x, ·) dQ(x)

∥∥∥∥
Lq(X ,µ)

.

Proof. Let W = Lp(X , µ) andΦ(x) = b(x,·)|b(x,·)|q−2

‖b(x,·)‖q−2
Lq(X,µ)

. Note thatW′ = Lq(X , µ). We now show

thatΦ∗(x) = b(x, ·). Consider

Φ∗(x) = (Φ(x))∗ =
Φ(x) |Φ(x)|p−2

‖Φ(x)‖p−2
W

=

b(x,·)|b(x,·)|q−2

‖b(x,·)‖q−2

W′

∣∣∣∣
b(x,·)|b(x,·)|q−2

‖b(x,·)‖q−2

W′

∣∣∣∣
p−2

∥∥∥∥
b(x,·)|b(x,·)|q−2

‖b(x,·)‖q−2

W′

∥∥∥∥
p−2

W

=
b(x, ·) |b(x, ·)|q−2+p−2+(q−2)(p−2)

‖b(x, ·)‖q−2
W′

∥∥∥b(x, ·) |b(x, ·)|q−2
∥∥∥
p−2

W

=
b(x, ·)

‖b(x, ·)‖q−2
W′

∥∥∥b(x, ·) |b(x, ·)|q−2
∥∥∥
p−2

W

.

Note that∥∥∥b(x, ·) |b(x, ·)|q−2
∥∥∥
p

W

=

∫

X
|b(x, t)|p |b(x, t)|p(q−2)

dµ(t) =

∫

X
|b(x, t)|q dµ(t) = ‖b(x, ·)‖q

W′ ,

which means‖b(x, ·)‖q−2
W′

∥∥∥b(x, ·) |b(x, ·)|q−2
∥∥∥
p−2

W

= ‖b(x, ·)‖q−2+ q
p (p−2)

W′ = 1 and therefore

Φ∗(x) = b(x, ·). Using these in Theorem 14, we have

[u,Φ(x)]
W

(4)
=

∫

X

u(t)(Φ(x))(t) |(Φ(x))(t)|p−2

‖Φ(x)‖p−2
W

dµ(t) =

∫

X
u(t)(Φ∗(x))(t) dµ(t)

=

∫

X
u(t)b(x, t) dµ(t)
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and

[Φ(x), u]
W

(4)
=

∫

X

(Φ(x))(t)u(t) |u(t)|p−2

‖u‖p−2
W

dµ(t),

therefore yieldingBp(X ) andB′
p(X ). Now, consider

γK(P,Q) =

∥∥∥∥
∫

X
K(·, x) d(P−Q)(x)

∥∥∥∥
B′

p

=

∥∥∥∥∥

∫

X

∫

X

b(·, t)|b(·, t)|q−2

‖b(·, ·)‖q−2
Lq(X ,µ)

b(x, t) dµ(t) d(P−Q)(x)

∥∥∥∥∥
B′

p

(∗)
=

∥∥∥∥∥∥∥∥∥

∫

X

b(·, t)|b(·, t)|q−2

‖b(·, ·)‖q−2
Lq(X ,µ)

A(t)︷ ︸︸ ︷∫

X
b(x, t) d(P−Q)(x) dµ(t)

∥∥∥∥∥∥∥∥∥
B′

p

= ‖[Φ(·), A∗]
W
‖
B′

p
= ‖A∗‖

W
,

where we have invoked Fubini’s theorem in (∗). Since‖A∗‖
W

(a8)
= ‖A‖

W′ , the result follows.

Corollary 15 shows that the embedding ofP into B
′ as

∫
X K(·, x) dP(x) can be interpreted as

embeddingP into Lq(X , µ) as
∫
X b(x, ·) dP(x) since these embeddings are isometric. Based on

Corollary 15, Examples 1, 2 and 3 are obtained by choosingb(x, t) = ei〈x.t〉, x, y ∈ Rd, b(x, t) =
e〈x,t〉, x, y ∈ Rd andb(x, t) = (x − t)2e−

3
2 (x−t)

2

, x, y ∈ R with µ as the Lebesgue measure onR
andq = 3, respectively.

A.7 Interpretation of Bpdp (Rd) in Example 1

B
pd
p (Rd) can also be interpreted as follows. Define

ψ(x) = (µ(Rd))
p−2
p

∫

Rd

e−i〈x,t〉 dµ(t)

so thatK(x, y) = ψ(x − y). Supposeψ ∈ Cb(Rd) ∩ L1(Rd) is strictly pd so thatdµ(t) =

(2π)−d/2ψ̂(t) dt, whereψ̂(x) ≥ 0, ∀x ∈ Rd andψ̂ ∈ L1(Rd), which follows from Corollary 6.12
in [25]. Then (7) can be written as

B
pd
p (R

d) :=

{
fu(x) = (2π)−d/2

∫

Rd

ei〈x,t〉u(t)ψ̂(t) dt : u ∈ Lp(Rd, ψ̂), x ∈ Rd
}
.

Sinceψ̂ ∈ L1(Rd) andu ∈ Lp(Rd, ψ̂), it is easy to check thatuψ̂ ∈ L1(Rd). Therefore, any
fu ∈ B

pd
p (Rd) can be written asfu = (uψ̂)∨, which meanŝfu = uψ̂, i.e.,

f̂u

ψ̂
∈ Lp(Rd, ψ̂) ⇔ f̂u

ψ̂1/q
∈ Lp(Rd).

Therefore (7) is equivalent to

B
pd
p (Rd) :=

{
f ∈ C(Rd) :

f̂

ψ̂1/q
∈ Lp(Rd)

}
.

By defining‖f‖
B

pd
p
:= (2π)−

d
2p

∥∥∥ f̂

ψ̂1/q

∥∥∥
Lp(Rd)

and using‖ · ‖
B

pd
p

in

[f, h]
B

pd
p
= ‖h‖

B
pd
p

(
lim

t∈R,t→0

‖h+ tf‖
B

pd
p
− ‖h‖

B
pd
p

t
+ i lim

t∈R,t→0

‖ih+ tf‖
B

pd
p
− ‖h‖

B
pd
p

t

)
(15)
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yields

[f, g]
B

pd
p
=

1

(2π)d/2

∫

Rd

f̂(ω)ĝ(ω)|ĝ(ω)|p−2(ψ̂(ω))1−p

‖g‖p−2

B
pd
p

dω, (16)

where we have quoted (15) from Proposition 28 of [26]. Note that whenp = q = 2, Bpd
p (Rd)

reduces to an RKHS,

B
pd
2 (Rd) =

{
f ∈ C(Rd) :

∫

Rd

|f̂ |2

ψ̂
<∞

}

with (16) being an inner product,

〈f, g〉
B

pd
2
= (2π)−d/2

∫

Rd

f̂(ω)ĝ(ω)

ψ̂(ω)
dω.

Suppose

ψ(x) =
21−s

Γ(s)
‖x‖s−d/22 K̃d/2−s(‖x‖2),

whereK̃ represents the modified Bessel function ands > d/2. Thenψ̂(ω) = (1 + ‖ω‖22)−s, which
means

B
pd
p (R

d) =
{
f ∈ C(Rd) : (1 + ‖ · ‖22)

s
q f̂ ∈ Lp(Rd)

}

represents a Sobolev space of orders.

A.8 Derivation of K and ψ̂ in Example 3

Let µ be the Lebesgue measure onR, θ(x) = x2e−
3x2

2 andq = 3. Defineb(x, t) = θ(x− t). Since
θ(x) = θ(−x), ∀x ∈ R andθ(x) ≥ 0, ∀x ∈ R, usingb(x, t) in Corollary 15 yieldsK(x, y) =
ψ(x− y) with

ψ(x) = (2π)1/2 ‖θ(x− ·)‖−1
L3(R)

(
θ̂2θ̂
)∨

(x). (17)

In the following, we use the following identities, whereα > 0.
∫

Rd

e−α‖x‖
2
2 dx =

(π
α

) d
2

∫

R

(x − b)2re−α(x−b)
2

dx =

√
π

α

1

(2α)r
(2r)!

r! , 2r
, r ∈ N

̂e−α‖x‖
2
2 =

1

(2α)d/2
e−

‖x‖22
4α

d2

dx2
e−αx

2

= α
(
4αx2 − 2

)
e−αx

2

d4

dx4
e−αx

2

= α2
(
16α2x4 − 48αx2 + 12

)
e−αx

2

d6

dx6
e−αx

2

= α3
(
64α3x6 − 480α2x4 + 720αx2 − 120

)
e−αx

2

x̂nf(x) = in
dn

dxn
f̂(x)

Now consider

‖θ(x− ·)‖−1
L3(R) =

(∫

R

(x− t)6e−
9(x−t)2

2 dt

)− 1
3

=

(√
2π

9

(6)!

3!(18)3

)− 1
3

= 9 (50π)−
1
6 , (18)

θ̂2(x) = ̂x4e−3x2 =
d4

dx4
ê−3x2 =

1√
6

d4

dx4
e−

x2

18 =
x4 − 36x2 + 108

1296
√
2

e−
x2

12 ,
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and

θ̂(x) = − 1√
3

d2

dx2
e−

x2

6 =
3− x2

9
√
3
e−

x2

6 .

Therefore

(
θ̂2θ̂
)
(x) =

(3− x2)(x4 − 36x2 + 108)

2
9
2 37

e−
x2

4

=
−(x6 − 39x4 + 216x2 − 324)

2
9
2 37

e−
x2

4 , (19)

(
θ̂2θ̂
)∨

(x) =
−1

2
9
2 37

̂
(x6 − 39x4 + 216x2 − 324)e−

x2

4

=
1

2
9
2 37

(
d6

dx6
+ 39

d4

dx4
+ 216

d2

dx2
+ 324

)
̂
e−

x2

4

=
1

2437

(
d6

dx6
+ 39

d4

dx4
+ 216

d2

dx2
+ 324

)
e−x

2

=
e−x

2

2437

(
(64x6 − 480x4 + 720x2 − 120) + 39(16x4 − 48x2 + 12)

+216(4x2 − 2) + 324
)

=

(
4x6 + 9x4 − 18x2 + 15

)

37
e−x

2

. (20)

Using (18) and (20) in (17) yields

ψ(x) =
e−x

2

243

(
4π2

25

) 1
6 (

4x6 + 9x4 − 18x2 + 15
)
. (21)

Note thatψ in (21) is real and symmetric. We show thatK is however not pd, by show-
ing that there exists an interval over whicĥθ2θ̂ in (19) is negative (and the claim there-
fore follows from Bochner’s theorem). Defineg := θ̂2θ̂. It is easy to show thatg

is increasing on[−
√
13−

√
97, 0] and [

√
13−

√
97,
√
13 +

√
97], while it is decreasing on

[−
√
13 +

√
97,−

√
13−

√
97] and[0,

√
13−

√
97], with {0,±

√
13±

√
97} being its stationary

points. Alsog(0) > 0, g(±
√
13 +

√
97) > 0 while g(±

√
13−

√
97) < 0. This means there exists

a ∈ [0,
√
13−

√
97] andb ∈ [

√
13−

√
97,
√
13 +

√
97] such thatg(x) < 0 for all x ∈ (a, b).

Therefore, by Bochner’s theorem,ψ is not pd.

A.9 Approximation of γK(Pm,Qn) in (9)

Since computing (9) in closed form may not be possible for allq, (9) can be approximated as

γ̃K(Pm,Qn) = (µ(X ))1/q


 1

N

N∑

s=1

∣∣∣∣∣∣
1

m

m∑

j=1

b(Xj, ts)−
1

n

n∑

j=1

b(Yj , ts)

∣∣∣∣∣∣

q


1
q

,

where{ts}Ns=1 areN random samples drawn i.i.d. from the probability measure,η := µ/µ(X ),
assumingµ is finite onX . Now, we requirẽγK(Pm,Qn) to be a consistent estimator ofγK(P,Q).
Note that

|γ̃K(Pm,Qn)− γK(P,Q)| ≤ |γ̃K(Pm,Qn)− γK(Pm,Qn)|+ |γK(Pm,Qn)− γK(P,Q)| .

We showed that forBp(X ) in Corollary 15,

|γK(Pm,Qn)− γK(P,Q)| = O
(
m

max(1−q,−1)
min(q,2) + n

max(1−q,−1)
min(q,2)

)
.
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Definef :=
∫
X b(x, ·) d(Pm−Qn)(x) = 1

m

∑m
j=1 b(Xj , ·)− 1

n

∑n
j=1 b(Yj , ·). Now, let us consider

|γ̃K(Pm,Qn)− γK(Pm,Qn)| = (µ(X ))1/q

∣∣∣∣∣∣

(
1

N

N∑

s=1

|f(ts)|q
)1/q

−
(∫

X
|f(t)|q dη(t)

)1/q
∣∣∣∣∣∣

≤ (µ(X ))1/q

∣∣∣∣∣
1

N

N∑

s=1

|f(ts)|q −
∫

X
|f(t)|q dη(t)

∣∣∣∣∣

1/q

.

Assumingb(x, ·) is bounded for allx ∈ X , by Hoeffding’s inequality, we get

|γ̃K(Pm,Qn)− γK(Pm,Qn)| = O(N−1/2q).

Assumingm = n, if we drawN = O(mq), q ∈ [2,∞) or N = O(m2(q−1)), q ∈ (1, 2] from η,
γK(P,Q) can be consistently estimated from̃γK(Pm,Qn).

A.10 Derivation of (11)

DefiningψP :=
∫
X b(x, ·) dP(x), we have

γqK(Pm,Qn) =

∫

X
|ψPm(t)− ψQn(t)|q dµ(t)

=

∫

X
(ψPm − ψQn)(t)(ψPm − ψQn)(t)

s· · · (ψPm − ψQn)(t)(ψPm − ψQn)(t) dµ(t)

=

∫

X

∫

X
b(x1, t) d(Pm −Qn)(x1)

∫

X
b(x2, t) d(Pm −Qn)(x2)

s· · ·
∫

X
b(xq−1, t) d(Pm −Qn)(xq−1)

∫

X
b(xq, t) d(Pm −Qn)(xq) dµ(t)

(⋆)
=

∫

X

(∫

X

∫

X
b(x1, t)b(x2, t) d(Pm −Qn)(x1) d(Pm −Qn)(x2)

)
s· · ·

(∫

X

∫

X
b(xq−1, t)b(xq, t) d(Pm −Qn)(xq−1) d(Pm −Qn)(xq)

)
dµ(t)

(⋆)
=

∫

X



∫

X

q· · ·
∫

X

s∏

j=1

b(x2j−1, t)b(x2j , t)

q∏

j=1

d(Pm −Qn)(xj)


 dµ(t)

(⋆)
=

∫

X

q· · ·
∫

X

A(x1,...,xq)︷ ︸︸ ︷∫

X

s∏

j=1

b(x2j−1, t)b(x2j , t) dµ(t)

q∏

j=1

d(Pm −Qn)(xj), (22)

where we have invoked Fubini’s theorem in(⋆).

A.11 Computation ofA(x1, . . . , xq)

Let θ(x) = e−αx
2

, x ∈ R anddµ(t) = e−βt
2

dt. We show thatA(x1, . . . , xq) in (22) can be
computed in a closed form. To simplify the calculation, here, we assumeq = 4. Consider

A(x1, x2, x3, x4) =

∫

R

θ(x1 − t)θ(x2 − t)θ(x3 − t)θ(x4 − t) dµ(t)

=

∫

R

e−α((x1−t)2+(x2−t)2+(x3−t)2+(x4−t)2)e−βt
2

dt.

Using

(z − w)2 + δ(z − s)2 =
δ

1 + δ
(w − s)2 + (1 + δ)

(
z − w + δs

1 + δ

)2

,
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we get

A(x1, x2, x3, x4) =

√
π

4α+ β
e−(

α
2 (x1−x2)

2+α
2 (x3−x4)

2+α
4 (x1+x2−x3−x4)

2+ αβ
4(4α+β) (x1+x2+x3+x4)

2).

Therefore, with this choice ofθ andµ in Example 3,γK(Pm,Qn) can be computed in a closed form
(see (22)).
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