Finding Musically Meaningful Words Using Sparse CCA

David A. Torres, Douglas Turnbull, Bharath K. Sriperumbudur, Luke Barrington & Gert Lanckriet

University of California, San Diego

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Introduction

- Goal: Create a content-based music search engine for natural language queries.
 - it annotates songs with semantically meaningful words and retrieve relevant songs based on a text query.
 - CAL music search engine [Turnbull et al., 2007].

SQ (~

Introduction

- Goal: Create a content-based music search engine for natural language queries.
 - it annotates songs with semantically meaningful words and retrieve relevant songs based on a text query.
 - CAL music search engine [Turnbull et al., 2007].
- Problem: Picking a vocabulary of musically meaningful words (vocabulary selection).
 - discover words that can be modeled accurately.

SQ (V

Introduction

- Goal: Create a content-based music search engine for natural language queries.
 - it annotates songs with semantically meaningful words and retrieve relevant songs based on a text query.
 - CAL music search engine [Turnbull et al., 2007].
- Problem: Picking a vocabulary of musically meaningful words (vocabulary selection).
 - discover words that can be modeled accurately.
- Solution: Find words that have a high correlation with the audio feature representation.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●

SQ Q

Two-view Representation

Consider a set of annotated songs. Each song is represented by:

- Annotation vector in a semantic space
- Audio feature vector in a acoustic space

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

3

Semantic Representation

Vocabulary of words

- CAL 500: 174 phrases from a human survey
 - Instrumentation, genre, emotion, usages, visual characteristics
- LastFM: 15,000 tags from social music site
- Web mining: 100,000+ words minded from text documents

Annotation vector, s

- Each element represents the semantic association between a word and the song.
- $\mathbf{s} \in \mathbb{R}^d$, where d is the size of the vocabulary.
- Example: Frank Sinatra's "Fly me the moon"
 - Vocabulary={funk, jazz, guitar, female vocals, sad, passionate}

•
$$\mathbf{s} = \begin{bmatrix} \frac{0}{4}, \frac{3}{4}, \frac{4}{4}, \frac{0}{4}, \frac{2}{4}, \frac{1}{4} \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●

SQ Q

Each song is represented by an audio feature vector \mathbf{a} that is automatically extracted from the audio-content.

• Mel-frequency cepstral coefficients (MFCC).

SQ (~

Canonical Correlation Analysis

Solution: Solve

Let $X \in \mathbb{R}^{d_x}$ and $Y \in \mathbb{R}^{d_y}$ be two random variables.

Problem: Find \mathbf{w}_x and \mathbf{w}_y such that $\rho(\mathbf{w}_x^T \mathbf{X}, \mathbf{w}_y^T \mathbf{Y})$ is maximized.

$$\max_{\mathbf{w}_{x}, \mathbf{w}_{y}} \frac{\mathbf{w}_{x}^{T} \mathbf{S}_{xy} \mathbf{w}_{y}}{\sqrt{\mathbf{w}_{x}^{T} \mathbf{S}_{xx} \mathbf{w}_{x}} \sqrt{\mathbf{w}_{y}^{T} \mathbf{S}_{yy} \mathbf{w}_{y}}}$$

(1)

500

which is equivalent to

$$\begin{aligned} \max_{\mathbf{w}_{x}, \mathbf{w}_{y}} & \mathbf{w}_{x}^{T} \mathbf{S}_{xy} \mathbf{w}_{y} \\ \text{s.t.} & \mathbf{w}_{x}^{T} \mathbf{S}_{xx} \mathbf{w}_{x} = 1, \mathbf{w}_{y}^{T} \mathbf{S}_{yy} \mathbf{w}_{y} = 1. \end{aligned}$$
(2)

The above is the variational formulation of CCA.

Canonical Correlation Analysis

• In our analysis, a variation of Eq. (2) is used as given below.

$$max_{w} \quad w^{T} \mathbf{P} w$$

s.t.
$$w^{T} \mathbf{Q} w = 1.$$
 (3)

500

where
$$\mathbf{P} = \begin{pmatrix} \mathbf{0} & \mathbf{S}_{xy} \\ \mathbf{S}_{yx} & \mathbf{0} \end{pmatrix}$$
, $\mathbf{Q} = \begin{pmatrix} \mathbf{S}_{xx} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{yy} \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} \mathbf{w}_{x} \\ \mathbf{w}_{y} \end{pmatrix}$

• Eq. (3) is a generalized eigenvalue problem with **P** being indefinite and $\mathbf{Q} \in \mathbb{S}_{++}^{d_x+d_y}$.

- CCA solution is usually not sparse.
 - The solution vector has components along all the features (here, words).
 - Difficult to interpret the results.
- Few relevant features might be sufficient to describe the correlation.
- In our application, vocabulary pruning results in modeling fewer words.

Solution: Sparsify the CCA solution.

 \mathcal{A}

Sparse CCA

Heurisitc: $\mathbf{w}_y = [w_{y_1}, \dots, w_{y_{n_y}}]^T$. If $|w_{y_i}| < \epsilon$, choose $w_{y_i} = 0$. (non-optimal) Solution: Introduce the sparsity constraint in CCA's variational formulation. Sparse CCA: The variational formulation is given by

$$\max_{\mathbf{w}} \quad \mathbf{w}^{T} \mathbf{P} \mathbf{w}$$
s.t.
$$\mathbf{w}^{T} \mathbf{Q} \mathbf{w} = 1$$

$$||\mathbf{w}||_{0} \leq k,$$
(4)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少久?

where $1 \le k \le n$, $n = d_x + d_y$ and $||\mathbf{w}||_0$ is the cardinality of \mathbf{w} .

Issues: Eq. (4) is NP-hard and therefore intractable. ℓ_1 -relaxation is still computationally hard.

Convex Relaxation

Primal:

$$\begin{array}{ll} \max_{\mathbf{w}} & \mathbf{w}^T \mathbf{P} \mathbf{w} \\ \text{s.t.} & \mathbf{w}^T \mathbf{Q} \mathbf{w} \leq 1 \\ & ||\mathbf{w}||_1 \leq k. \end{array} \tag{5}$$

Trick: Compute the bi-dual (dual of the dual of the primal). Bi-dual:

$$\begin{array}{ll} \max_{\mathbf{W},\mathbf{w}} & \operatorname{tr}(\mathbf{WP}) \\ \text{s.t.} & \operatorname{tr}(\mathbf{WQ}) \leq 1 \\ & ||\mathbf{w}||_1 \leq k \\ & \left(\begin{array}{cc} \mathbf{W} & \mathbf{w} \\ \mathbf{w}^T & 1 \end{array} \right) \succeq 0. \ (SDP) \end{array}$$
(6)

5900

Issue: SDP relaxation is prohibitively expensive to solve for large *n*.

Approximation to $||\mathbf{x}||_0$

- Two observations
 - The ℓ₁-norm relaxation does not simplify Eq. (4) ⇒ a better approximation to cardinality would improve sparsity.
 - The convex SDP approximation to Eq. (4) scales terribly in size ⇒ use a locally convergent algorithm with better scalability.

r

• Eq. (4) can be written as

$$\max_{\mathbf{w}} \quad \mathbf{w}^{T} \mathbf{P} \mathbf{w} - \rho ||\mathbf{w}||_{0}$$
s.t.
$$\mathbf{w}^{T} \mathbf{Q} \mathbf{w} \leq 1,$$
(7)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三

SQ (~

where $\rho \geq 0$.

• Approximate $||\mathbf{x}||_0$ by $\sum_{i=1}^n \log(|x_i|)$. (Refer to [Sriperumbudur et al., 2007] for more details)

Approximation to $||\mathbf{x}||_0$

• Eq. (7) can be written as

$$\min_{\mathbf{w}} \quad \mu ||\mathbf{w}||^2 - \left(\mathbf{w}^T (\mathbf{P} + \mu \mathbf{I}) \mathbf{w} - \rho \sum_{i=1}^n \log |w_i| \right)$$
s.t.
$$\mathbf{w}^T \mathbf{Q} \mathbf{w} \le 1.$$
(8)

where $\mu \geq \max(0, -\lambda_{\min}(\mathbf{P}))$.

- The objective in Eq. (8) is a difference of two convex functions and therefore is a d.c. program.
- Solving Eq. (8) using the DC minimization algorithm (DCA) [Tao and An, 1998] yields the following algorithm.

SQ (~

Sparse CCA Algorithm

Require: $\mathbf{P} \in \mathbb{S}^{n}$, $\mathbf{Q} \in \mathbb{S}_{++}^{n}$ and $\rho \geq 0$ 1: Choose $\mathbf{w}_{0} \in {\mathbf{w} : \mathbf{w}^{T} \mathbf{Q} \mathbf{w} \leq 1}$ arbitrarily 2: **repeat**

3:

$$\bar{\mathbf{w}}^* = \arg\min_{\bar{\mathbf{w}}} \quad \mu \bar{\mathbf{w}}^T \mathbf{D}^2(\mathbf{w}_l) \bar{\mathbf{w}} - 2\mathbf{w}_l^T [\mathbf{P} + \mu \mathbf{I}] \mathbf{D}(\mathbf{w}_l) \bar{\mathbf{w}} + \rho ||\bar{\mathbf{w}}||_1$$
s.t.
$$\bar{\mathbf{w}}^T \mathbf{D}(\mathbf{w}_l) \mathbf{Q} \mathbf{D}(\mathbf{w}_l) \bar{\mathbf{w}} \le 1$$
(9)

4: $\mathbf{w}_{l+1} = \mathbf{D}(\mathbf{w}_l) \bar{\mathbf{w}}^*$ 5: until $\mathbf{w}_{l+1} = \mathbf{w}_l$ 6: return \mathbf{w}_l , $\bar{\mathbf{w}}^*$

where $\mathbf{D}(\mathbf{w}) = diag(\mathbf{w})$.

 solves a sequence of convex quadratically constrained quadratic programs (QCQPs).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三

Modification to Vocabulary Selection

- For vocabulary selection, the sparsity constraint is required only on \mathbf{w}_y instead of on \mathbf{w} .
- Modify Eq. (9) as

$$\bar{\mathbf{w}}^* = \arg\min_{\bar{\mathbf{w}}} \quad \mu \bar{\mathbf{w}}^T \mathbf{D}^2(\mathbf{w}_l) \bar{\mathbf{w}} - 2\mathbf{w}_l^T [\mathbf{P} + \mu \mathbf{I}] \mathbf{D}(\mathbf{w}_l) \bar{\mathbf{w}} + || \boldsymbol{\tau} \circ \bar{\mathbf{w}} ||_1$$
s.t.
$$\bar{\mathbf{w}}^T \mathbf{D}(\mathbf{w}_l) \mathbf{Q} \mathbf{D}(\mathbf{w}_l) \bar{\mathbf{w}} \le 1 \quad (10)$$

where $(\mathbf{p} \circ \mathbf{q})_i = p_i q_i$ and $\boldsymbol{\tau} = [0, 0, \overset{d_x}{\ldots}, 0, \rho, \rho, \overset{d_y}{\ldots}, \rho]^T$.

 The non-zero elements of w_y can be interpreted as those words which have a high correlation with the audio representation.

Setting ρ : Not straightforward (increasing ρ reduces the vocabulary size).

Issues: Quality of the solution is hard to derive unlike in SDP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Experimental Setup

Dataset: CAL500 [Turnbull et al., 2007]

• 500 songs by 500 artists

Semantic representation:

- 173 words (e.g. genre, instrumentation, usages, emotions, vocals, etc.)
- Annotation vector, **s** is an average from 4 listeners.
- Word agreement score: measures how consistently listeners apply a word to songs.

SQ (V

Acoustic representation:

- Bag of dynamic MFCC vectors (52-dimensional).
- Duplicate annotation vector for each dynamic MFCC.

Experiment: Vocabulary Pruning

• Web2131 Text corpus [Turnbull et al., 2006]

- Collection of 2131 songs and accompanying expert song reviews mined from www.allmusic.com.
- 315 word vocabulary.
- Annotation vector is based on the presence or absence of a word in the review.
- More noisy word-song relationships than CAL500.
- Experimental design
 - Merge vocabularies: 173+315=488 words.
 - Prune noisy words as we increase amount of sparsity in CCA.
- Hypothesis
 - Web2131 words will be pruned before CAL500 words.

3

SQ (V

Results: Vocabulary Pruning

Vocabulary size	488	249	203	149	103	50
# CAL500 words	173	118	101	85	65	39
# Web2131 words	315	131	102	64	38	11
%Web2131	.64	.52	.50	.42	.36	.22

Table: The fraction of noisy web-mined words in a vocabulary as vocabulary size is reduced: As the size shrinks sparse CCA prunes noisy words and the web-mined words are eliminated over higher quality CAL500 words.

Experiment: Vocabulary Selection for Music Retrieval

- *P*(*song*|*word*) is modeled as a Gaussian mixture model.
- The system can annotate a novel song with words from its vocabulary or it can retrieve an ordered list of novel songs based on a keyword query.
- Evaluation metric for retrieval: Area under the ROC curve.

Figure: Comparison of vocabulary selection techniques: We compare vocabulary selection using human agreement, acoustic correlation, and a random baseline, as it effects retrieval performance.

Bharath K. Sriperumbudur (UCSD)

Summary

- Constructing a meaningful vocabulary is the first step in building a content-based, natural-language search engine for music.
- Given a semantic representation and acoustic representation, sparse CCA can be used to find musically meaningful words.
 - semantic dimensions linearly correlated with audio features.
- Automatically pruning words is important when using noisy sources of semantic information.

 \mathcal{A}

References

Sriperumbudur, B. K., Torres, D., and Lanckriet, G. R. G. (2007). Sparse eigen methods by d.c. programming. In *ICML 2007*.

Tao, P. D. and An, L. T. H. (1998). D.c. optimization algorithms for solving the trust region subproblem. *SIAM J. Optim.*, pages 476–505.

Turnbull, D., Barrington, L., and Lanckriet, G. R. G. (2006). Modelling music and words using a multi-class naive bayes approach. In *ISMIR 2006*.

Turnbull, D., Barrington, L., Torres, D., and Lanckriet, G. R. G. (2007). Towards musical query-by-semantic description using the cal500 dataset. In *SIGIR 2007*.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Ξ

SQ (~

Questions

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 클

Thank You