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Two-Sample Problem

Given:

m samples X := {x1, . . . , xm} drawn i.i.d. from P.
n samples Y := {y1, . . . , yn} drawn i.i.d. from Q.

Determine: are P and Q different.

Applications:

Microarray data aggregation
Speaker/author identification
Schema matching

Issues: To deal with

High dimensionality
Low sample size
Structured domains (strings and graphs)
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Maximum Mean Discrepancy (MMD)

Lemma ([Dudley, 2002])

Let (X , d) be a separable metric space, and let P, Q be two Borel
probability measures defined on X . Then P = Q if and only if
EP[f (x)] = EQ[f (x)], ∀ f ∈ C (X ), where C (X ) is the space of
bounded continuous functions on X .

Test statistic: [Gretton et al., 2007]

MMD[F ,P,Q] := sup
f ∈F

(EP[f (x)] − EQ[f (y)]) . (1)

for some function class F .

F = C (X ): MMD[F ,P,Q] = 0 ⇔ P = Q.

Is there any other function class F apart from C (X ) for
which MMD[F ,P,Q] = 0 ⇔ P = Q?
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Maximum Mean Discrepancy (MMD)

Theorem ([Gretton et al., 2007])

Let F be a unit ball in a universal RKHS H, defined on the
compact metric space X , with associated kernel k(., .). Then
MMD[F ,P,Q] = 0 if and only if P = Q.

Test statistic:

MMD[F ,P,Q] =
∥

∥EP[k(., x)] − EQ[k(., y)]
∥

∥

H
M̂MD[F ,m, n] =

∥

∥

1
n

∑n
i=1 k(., xi ) −

1
m

∑m
i=1 k(., yi )

∥

∥

H

P = Q, m = n, k(x , x) ≤ K <∞:

Consistency: M̂MD[F , n, n] = O
(

1√
n

)

Experimentally, the method is shown to work well on small
sample sizes, high dimensional data and is even applicable to
data from structured domains.
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When will the method fail?

k(., .) induces H. So, the method is as good as the kernel.

Universal RKHS: [Steinwart, 2002]

When X is compact, H is dense in C (X ) with respect to the
L∞ norm.

Universal kernels: Gaussian, Laplacian.

Questions:

Are there non-universal kernels for which ∃P 6= Q such that
MMD[F ,P,Q] = 0?

For what class of probability distributions, can a non-universal
kernel behave as: MMD[F ,P,Q] = 0 ⇔ P = Q?

Are there non-universal kernels for which
MMD[F ,P,Q] = 0 ⇔ P = Q, ∀P,Q?

New formulation is needed to answer these questions.
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Background & Notation

Assumption ①: X ⊆ Rd . k(., .) is translation-invariant, i.e.,
k(x , y) = ψ(x − y), where ψ ∈ C (Rd) is a positive definite
function.

By Bochner’s theorem, ψ(x) =
∫

Rd exp(−j〈ω, x〉) dΛ(ω),
x ∈ Rd , where Λ is a finite non-negative Borel measure on
Rd .

Ψ(ω) := dΛ
dω

is the distributional derivative of Λ.

Characteristic function of P:
φP(ω) :=

∫

Rd exp(j〈ω, x〉) dP(x), ω ∈ Rd .

p(x) := dP
dx

is the distributional derivative of P. Similarly q is
the distributional derivative of Q.
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New Formulation of MMD

Theorem

Let F be a unit ball in a RKHS H (not necessarily universal),
defined on X ⊆ Rd . Let φP and φQ be the characteristic functions
corresponding to P and Q respectively. Suppose k(., .) satisfies ①.
Then

MMD[F ,P,Q] =
∥

∥F
−1

[

Ψ(φ∗P − φ∗Q)
]
∥

∥

H
, (2)

where F−1 is the Fourier inverse and ∗ is the complex conjugation.

The above formulation is used to study the behavior of MMD,
more specifically the case of MMD[F ,P,Q] = 0.
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Characteristic Kernel

Definition (Characteristic kernel)

A positive-definite kernel is a characteristic kernel for a class, D of
probability measures on Rd if MMD[F ,P,Q] = 0 ⇔ P = Q for all
P,Q ∈ D.

Remark: Universal kernels on a compact subset of Rd are
characteristic kernels for any P,Q.

Example (Non-characteristic kernel)

Let ψ(x) = 1, ∀ x ∈ Rd . Then Ψ(ω) = (2π)dδ(ω), i.e.,
Ψ(ω) = 0, ω ∈ Rd\{0}. Therefore, MMD[F ,P,Q] = 0, ∀P,Q.

Question: Are there interesting kernels for which ∃P 6= Q such
that MMD[F ,P,Q] = 0?
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Main Result

Theorem

Let F be a unit ball in a RKHS H defined on X ⊆ Rd . Suppose
that k(., .) satisfies ① and supp(Ψ) ⊆ Rd . Let P,Q be probability
distributions on Rd such that P 6= Q. Then MMD[F ,P,Q] = 0 if
and only if there exists a tempered distribution θ : S → C that
satisfies the following conditions:

(i) p − q = F−1θ

(ii) θΨ = 0

where S is the Schwartz space of rapidly decaying functions.
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Remarks

Dependence on the kernel: through supp(Ψ).

Three cases: Suppose X ⊆ R.
1 {ω : Ψ(ω) = 0} is empty
2 {ω : Ψ(ω) = 0} is non-empty but countable
3 {ω : Ψ(ω) = 0} is uncountable

The following proposition settles the case when
{ω : Ψ(ω) = 0} is empty.

Proposition

Let ψ be such that Ψ(ω) > 0,∀ω ∈ Rd . Then ψ is a characteristic
kernel for any D.

Example: Gaussian and Laplacian kernels.
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{ω : Ψ(ω) = 0} is non-empty but countable

Proposition

Let ψ be such that supp(Ψ) = Rd . Then ψ is a characteristic
kernel for any D.

Example: B2n+1-spline kernels.

Corollary

Let ψ be compactly supported on Rd . Then ψ is a characteristic
kernel for any D.

Advantage: Compactly supported kernels are computationally
advantageous compared with non-compact kernels such as the
Gaussian and Laplacian.
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Examples of characteristic kernels (for any D)

Gaussian kernel:
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{ω : Ψ(ω) = 0} is uncountable : Examples

Poisson kernel:
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{ω : Ψ(ω) = 0} is uncountable

Proposition

Let D be the class of discrete probability measures defined on X .
Then ∃P 6= Q, P,Q ∈ D such that MMD[F ,P,Q] = 0 if and only
if the following conditions hold:

(i) ψ is τ -periodic on Rd , i.e.,
ψ(x) = ψ(x + γ ◦ τ), γ ∈ Zd , 0 ≺ τ ≺ ∞.

(ii) X = {x1, x2, . . .}, xn ∈ {l ◦ τ : l ∈ Zd}, ∀ n, where ◦
represents the Hadamard multiplication.

This is a very limited case for the test to fail.

Every aperiodic kernel is a characteristic kernel for the class of
discrete probability measures.

Example: ψ(x) = sin(Mx)
πx

with Ψ(ω) = 1[−M,M](ω), x , ω ∈ R.
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{ω : Ψ(ω) = 0} is uncountable

Proposition

Let D be the class of non-discrete probability measures that are
compactly supported on Rd . Suppose ψ be such that
supp(Ψ) ⊂ Rd . Then ψ is a characteristic kernel for D.

Proof idea: Based on the following result (a corollary of
Paley-Wiener theorem).

Lemma ([Mallat, 1998])

If g 6= 0 has a compact support then its Fourier transform, G (ω)
cannot be zero on a whole interval. Similarly, if G 6= 0 has a
compact support then g(x) cannot be zero on a whole interval.
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{ω : Ψ(ω) = 0} is uncountable

Non-discrete probability measures with non-compact support:
Does there exist θ 6= 0 satisfying the conditions in the main
result?
The following result due to Paley & Wiener can be used to
address this issue. [Strichartz, 2003]

Theorem (Paley-Wiener)

Let g be a C∞ function supported in [−M,M]. Then G (ω + jσ) is
an entire function of exponential type M, i.e. ∃C such that

|G (ω + jσ)| ≤ C exp(M|σ|), (3)

and G (ω) is rapidly decreasing, i.e., ∃ cn such that

|G (ω)| ≤ cn(1 + |ω|)−n, ∀ n ∈ N. (4)

In addition, the converse also holds.
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{ω : Ψ(ω) = 0} is uncountable

Existence of g ∈ C∞ supported in [−M,M]:

gM,ω0(ω) = 1(−M,M)(ω − ω0) exp
(

− M2

M2−(ω−ω0)2

)

.

Choose θ(ω) = gM,ω0(ω) for some M, ω0 so that θ(ω)
satisfies the conditions in the main result.

F−1θ is a rapidly decaying function.

With the above construction, we have the following result:

Proposition

Let D be the class of non-discrete probability measures that are
non-compactly supported on Rd . Suppose ψ be such that
supp(Ψ) ⊂ Rd . Then ∃P 6= Q such that MMD[F ,P,Q] = 0.
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Example

ψ(x) = sin(Mx/2)
πx

= M
π sinc

(

Mx
π

)

; Ψ(ω) = 1[−M,M](ω).
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Example

Choose q(x) = 1
π(1+x2)

, the Cauchy distribution.

Construct p(x) = q(x) + (F−1θN)(x).
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Samples X and Y of size n = 1000 are drawn from p and q
respectively.

M̂MD[F , n, n] is verified to be 0.
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Testing for Independence

Testing independence between random variables X and Y can
be posed as a two-sample problem based on the following
result.

Theorem ([Jacod and Protter, 2000])

The random variables X and Y are independent if and only if
EPxy

[f (x)g(y)] = EPx⊗Py
[f (x)g(y)] for each pair (f , g) of

bounded continuous functions.

Statistic for testing independence:
MMD[F ⊗ G,Pxy ,Px ⊗ Py ].

All the results derived before hold for independence testing
also.
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Summary

RKHS based two-sample test can fail when:

a periodic kernel is used to test discrete probability measures
on Rd .

a kernel with uncountable holes in its spectrum is used to test
non-discrete probability measures with non-compact support
on Rd .
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