The effect of kernel choice on RKHS based statistical tests

Bharath K. Sriperumbudur,¹ Arthur Gretton,² Kenji Fukumizu,³ & Bernhard Schölkopf²

¹University of California, San Diego; ²MPI for Biological Cybernetics, Tübingen; ³Institute for Statistical Mathematics, Tokyo.

NIPS 2007 Workshop Representations and Inference on Probability Distributions

Two-Sample Problem

• Given:

- *m* samples $\mathbf{X} := \{x_1, \ldots, x_m\}$ drawn i.i.d. from **P**.
- *n* samples $\mathbf{Y} := \{y_1, \ldots, y_n\}$ drawn i.i.d. from \mathbf{Q} .
- Determine: are **P** and **Q** different.
- Applications:
 - Microarray data aggregation
 - Speaker/author identification
 - Schema matching
- Issues: To deal with
 - High dimensionality
 - Low sample size
 - Structured domains (strings and graphs)

Lemma ([Dudley, 2002])

Let (\mathcal{X}, d) be a separable metric space, and let \mathbf{P} , \mathbf{Q} be two Borel probability measures defined on \mathcal{X} . Then $\mathbf{P} = \mathbf{Q}$ if and only if $\mathbb{E}_{\mathbf{P}}[f(x)] = \mathbb{E}_{\mathbf{Q}}[f(x)], \forall f \in \mathscr{C}(\mathcal{X})$, where $\mathscr{C}(\mathcal{X})$ is the space of bounded continuous functions on \mathcal{X} .

• Test statistic: [Gretton et al., 2007]

 $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] := \sup_{f \in \mathcal{F}} \left(\mathbb{E}_{\mathbf{P}}[f(x)] - \mathbb{E}_{\mathbf{Q}}[f(y)] \right).$ (1)

for some function class \mathcal{F} .

- $\mathcal{F} = \mathscr{C}(\mathcal{X})$: $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0 \Leftrightarrow \mathbf{P} = \mathbf{Q}$.
- Is there any other function class *F* apart from *C*(*X*) for which *MMD*[*F*, **P**, **Q**] = 0 ⇔ **P** = **Q**?

Theorem ([Gretton et al., 2007])

Let \mathcal{F} be a unit ball in a universal RKHS \mathcal{H} , defined on the compact metric space \mathcal{X} , with associated kernel k(.,.). Then $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0$ if and only if $\mathbf{P} = \mathbf{Q}$.

- Test statistic:
 - $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = \left\| \mathbb{E}_{\mathbf{P}}[k(., x)] \mathbb{E}_{\mathbf{Q}}[k(., y)] \right\|_{\mathcal{H}}$
 - $\widehat{MMD}[\mathcal{F}, m, n] = \left\| \frac{1}{n} \sum_{i=1}^{n} k(., x_i) \frac{1}{m} \sum_{i=1}^{m} k(., y_i) \right\|_{\mathcal{H}}$

•
$$\mathbf{P} = \mathbf{Q}, \ m = n, \ k(x, x) \le K < \infty$$
:

• Consistency: $\widehat{MMD}[\mathcal{F}, n, n] = O\left(\frac{1}{\sqrt{n}}\right)$

 Experimentally, the method is shown to work well on small sample sizes, high dimensional data and is even applicable to data from structured domains.

When will the method fail?

- k(.,.) induces \mathcal{H} . So, the method is as good as the kernel.
- Universal RKHS: [Steinwart, 2002]
 - When \mathcal{X} is compact, \mathcal{H} is dense in $\mathscr{C}(\mathcal{X})$ with respect to the L_{∞} norm.
 - Universal kernels: Gaussian, Laplacian.
- Questions:
 - Are there non-universal kernels for which $\exists \mathbf{P} \neq \mathbf{Q}$ such that $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0$?
 - For what class of probability distributions, can a non-universal kernel behave as: $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0 \Leftrightarrow \mathbf{P} = \mathbf{Q}$?
 - Are there non-universal kernels for which $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0 \Leftrightarrow \mathbf{P} = \mathbf{Q}, \forall \mathbf{P}, \mathbf{Q}?$
- New formulation is needed to answer these questions.

Assumption ①: $\mathcal{X} \subseteq \mathbb{R}^d$. k(.,.) is translation-invariant, i.e., $k(x,y) = \psi(x-y)$, where $\psi \in \mathscr{C}(\mathbb{R}^d)$ is a positive definite function.

- By Bochner's theorem, $\psi(x) = \int_{\mathbb{R}^d} \exp(-j\langle \omega, x \rangle) d\Lambda(\omega)$, $x \in \mathbb{R}^d$, where Λ is a finite non-negative Borel measure on \mathbb{R}^d .
- $\Psi(\omega) := \frac{d\Lambda}{d\omega}$ is the distributional derivative of Λ .
- Characteristic function of **P**: $\phi_{\mathbf{P}}(\omega) := \int_{\mathbb{R}^d} \exp(j\langle \omega, x \rangle) d\mathbf{P}(x), \ \omega \in \mathbb{R}^d.$
- $p(x) := \frac{d\mathbf{P}}{dx}$ is the distributional derivative of **P**. Similarly *q* is the distributional derivative of **Q**.

Theorem

Let \mathcal{F} be a unit ball in a RKHS \mathcal{H} (not necessarily universal), defined on $\mathcal{X} \subseteq \mathbb{R}^d$. Let $\phi_{\mathbf{P}}$ and $\phi_{\mathbf{Q}}$ be the characteristic functions corresponding to \mathbf{P} and \mathbf{Q} respectively. Suppose k(.,.) satisfies ①. Then

$$MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = \left\| \mathbb{F}^{-1} \left[\Psi(\phi_{\mathbf{P}}^* - \phi_{\mathbf{Q}}^*) \right] \right\|_{\mathcal{H}},$$

where \mathbb{F}^{-1} is the Fourier inverse and * is the complex conjugation.

The above formulation is used to study the behavior of MMD, more specifically the case of $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0$.

(2)

Definition (Characteristic kernel)

A positive-definite kernel is a characteristic kernel for a class, \mathcal{D} of probability measures on \mathbb{R}^d if $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0 \Leftrightarrow \mathbf{P} = \mathbf{Q}$ for all $\mathbf{P}, \mathbf{Q} \in \mathcal{D}$.

Remark: Universal kernels on a compact subset of \mathbb{R}^d are characteristic kernels for any \mathbf{P}, \mathbf{Q} .

Example (Non-characteristic kernel)

Let $\psi(x) = 1, \forall x \in \mathbb{R}^d$. Then $\Psi(\omega) = (2\pi)^d \delta(\omega)$, i.e., $\Psi(\omega) = 0, \omega \in \mathbb{R}^d \setminus \{0\}$. Therefore, $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0, \forall \mathbf{P}, \mathbf{Q}$.

Question: Are there interesting kernels for which $\exists \mathbf{P} \neq \mathbf{Q}$ such that $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0$?

Theorem

Let \mathcal{F} be a unit ball in a RKHS \mathcal{H} defined on $\mathcal{X} \subseteq \mathbb{R}^d$. Suppose that k(.,.) satisfies ① and $supp(\Psi) \subseteq \mathbb{R}^d$. Let \mathbf{P}, \mathbf{Q} be probability distributions on \mathbb{R}^d such that $\mathbf{P} \neq \mathbf{Q}$. Then $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0$ if and only if there exists a tempered distribution $\theta : \mathscr{S} \to \mathbb{C}$ that satisfies the following conditions:

(i)
$$p-q = \mathbb{F}^{-1}\theta$$

(ii)
$$\theta \Psi = 0$$

where \mathscr{S} is the Schwartz space of rapidly decaying functions.

Remarks

- Dependence on the kernel: through $supp(\Psi)$.
- Three cases: Suppose $\mathcal{X} \subseteq \mathbb{R}$.

$$\left\{ \omega : \Psi(\omega) = 0 \right\} \text{ is empty}$$

- 2 $\{\omega : \Psi(\omega) = 0\}$ is non-empty but countable
- 3 $\{\omega: \Psi(\omega) = 0\}$ is uncountable
- The following proposition settles the case when $\{\omega : \Psi(\omega) = 0\}$ is empty.

Proposition

Let ψ be such that $\Psi(\omega) > 0, \forall \omega \in \mathbb{R}^d$. Then ψ is a characteristic kernel for any \mathcal{D} .

Example: Gaussian and Laplacian kernels.

$\{\omega: \Psi(\omega) = 0\}$ is non-empty but countable

Proposition

Let ψ be such that $supp(\Psi) = \mathbb{R}^d$. Then ψ is a characteristic kernel for any \mathcal{D} .

Example: B_{2n+1} -spline kernels.

Corollary

Let ψ be compactly supported on \mathbb{R}^d . Then ψ is a characteristic kernel for any \mathcal{D} .

Advantage: Compactly supported kernels are computationally advantageous compared with non-compact kernels such as the Gaussian and Laplacian.

Examples of characteristic kernels (for any \mathcal{D})

The effect of kernel choice on RKHS based statistical tests

 $\{\omega: \Psi(\omega) = 0\}$ is uncountable : Examples

Proposition

Let \mathcal{D} be the class of discrete probability measures defined on \mathcal{X} . Then $\exists \mathbf{P} \neq \mathbf{Q}, \mathbf{P}, \mathbf{Q} \in \mathcal{D}$ such that $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0$ if and only if the following conditions hold:

- This is a very limited case for the test to fail.
- Every aperiodic kernel is a characteristic kernel for the class of discrete probability measures.

• Example:
$$\psi(x) = \frac{\sin(Mx)}{\pi x}$$
 with $\Psi(\omega) = \mathbf{1}_{[-M,M]}(\omega), x, \omega \in \mathbb{R}$.

Proposition

Let \mathcal{D} be the class of non-discrete probability measures that are compactly supported on \mathbb{R}^d . Suppose ψ be such that $supp(\Psi) \subset \mathbb{R}^d$. Then ψ is a characteristic kernel for \mathcal{D} .

Proof idea: Based on the following result (a corollary of Paley-Wiener theorem).

Lemma ([Mallat, 1998])

If $g \neq 0$ has a compact support then its Fourier transform, $G(\omega)$ cannot be zero on a whole interval. Similarly, if $G \neq 0$ has a compact support then g(x) cannot be zero on a whole interval.

$\{\omega: \Psi(\omega) = 0\}$ is uncountable

- Non-discrete probability measures with non-compact support:
 - Does there exist $\theta \neq 0$ satisfying the conditions in the main result?
 - The following result due to Paley & Wiener can be used to address this issue. [Strichartz, 2003]

Theorem (Paley-Wiener)

Let g be a C^{∞} function supported in [-M, M]. Then $G(\omega + j\sigma)$ is an entire function of exponential type M, i.e. $\exists C$ such that

$$|G(\omega + j\sigma)| \le C \exp(M|\sigma|), \tag{3}$$

and $G(\omega)$ is rapidly decreasing, i.e., $\exists c_n$ such that

$$|G(\omega)| \leq c_n (1+|\omega|)^{-n}, \, \forall \, n \in \mathbb{N}.$$
 (4)

In addition, the converse also holds.

$\{\omega: \Psi(\omega) = 0\}$ is uncountable

- Existence of $g \in C^{\infty}$ supported in [-M, M]: $g_{M,\omega_0}(\omega) = \mathbf{1}_{(-M,M)}(\omega - \omega_0) \exp\left(-\frac{M^2}{M^2 - (\omega - \omega_0)^2}\right).$
- Choose $\theta(\omega) = g_{M,\omega_0}(\omega)$ for some M, ω_0 so that $\theta(\omega)$ satisfies the conditions in the main result.
- $\mathbb{F}^{-1}\theta$ is a rapidly decaying function.

With the above construction, we have the following result:

Proposition

Let \mathcal{D} be the class of non-discrete probability measures that are non-compactly supported on \mathbb{R}^d . Suppose ψ be such that $supp(\Psi) \subset \mathbb{R}^d$. Then $\exists \mathbf{P} \neq \mathbf{Q}$ such that $MMD[\mathcal{F}, \mathbf{P}, \mathbf{Q}] = 0$. Example

•
$$\psi(x) = \frac{\sin(Mx/2)}{\pi x} = \frac{M}{\pi} \operatorname{sinc}\left(\frac{Mx}{\pi}\right); \ \Psi(\omega) = \mathbf{1}_{[-M,M]}(\omega).$$

• $\theta_N(\omega) = \frac{A}{2j} \left[\odot_1^N \mathbf{1}_{[-M/2,M/2]}(\omega) \right] \odot \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right];$ $(\mathbb{F}^{-1}\theta_N)(x) = \left(\frac{AM}{2\pi}\right)^N \operatorname{sinc}^N \left(\frac{Mx}{2\pi}\right) \text{ with } |\omega_0| \ge \left(\frac{N+2}{2}\right) M.$

Example

- Choose $q(x) = \frac{1}{\pi(1+x^2)}$, the Cauchy distribution.
- Construct $p(x) = q(x) + (\mathbb{F}^{-1}\theta_N)(x)$.

- Samples X and Y of size n = 1000 are drawn from p and q respectively.
- $\widehat{MMD}[\mathcal{F}, n, n]$ is verified to be 0.

• Testing independence between random variables X and Y can be posed as a two-sample problem based on the following result.

Theorem ([Jacod and Protter, 2000])

The random variables X and Y are independent if and only if $\mathbb{E}_{P_{xy}}[f(x)g(y)] = \mathbb{E}_{P_x \otimes P_y}[f(x)g(y)]$ for each pair (f,g) of bounded continuous functions.

- Statistic for testing independence: $MMD[\mathcal{F} \otimes \mathcal{G}, \mathbf{P}_{xy}, \mathbf{P}_{x} \otimes \mathbf{P}_{y}].$
- All the results derived before hold for independence testing also.

- RKHS based two-sample test can fail when:
 - a periodic kernel is used to test discrete probability measures on \mathbb{R}^d .
 - a kernel with uncountable holes in its spectrum is used to test non-discrete probability measures with non-compact support on ℝ^d.

References

Dudley, R. M. (2002).

Real Analysis and Probability. Cambridge University Press, Cambridge, UK.

Gretton, A., Borgwardt, K. M., Rasch, M., Schölkopf, B., and Smola, A. (2007).

A kernel method for the two sample problem.

In Schölkopf, B., Platt, J., and Hoffman, T., editors, *Advances in Neural Information Processing Systems* 19, pages 513–520, Cambridge, MA. MIT Press.

Jacod, J. and Protter, P. (2000).

Probability Essentials. Springer-Verlag, New York, USA.

Mallat, S. G. (1998).

A Wavelet Tour of Signal Processing. Academic Press, San Diego.

Steinwart, I. (2002).

On the influence of the kernel on the consistency of support vector machines. *Journal of Machine Learning Research*, 2:67–93.

Strichartz, R. S. (2003).

A Guide to Distribution Theory and Fourier Transforms. World Scientific Publishing, Singapore.