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Probability Metrics

◮ X : measurable space.

◮ P : set of all probability measures defined on X .

◮ γ : P × P → R+ is a notion of distance on P, called the
probability metric.

Popular example: φ-divergence

Dφ(P,Q) :=

{ ∫
X
φ
(

dP
dQ

)
dQ, P ≪ Q

+∞, otherwise
,

where φ : [0,∞) → (−∞,∞] is a convex function.

Appropriate choice of φ: Kullback-Leibler divergence, Jensen-Shannon
divergence, Total-variation distance, Hellinger distance, χ2-distance.
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Applications

Two-sample problem:

◮ Given random samples {X1, . . . ,Xm} and {Y1, . . . ,Yn} drawn i.i.d.
from P and Q, respectively.

◮ Determine: are P and Q different?
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◮ γ(P,Q) : distance metric between P and Q.

H0 : P = Q H0 : γ(P,Q) = 0
≡

H1 : P 6= Q H1 : γ(P,Q) > 0
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Other applications:

◮ Hypothesis testing : Independence test, Goodness of fit test, etc.

◮ Limit theorems (central limit theorem), density estimation, etc.



Estimation of Dφ(P,Q)

◮ Given random samples {X1, . . . ,Xm} and {Y1, . . . ,Yn} drawn i.i.d.
from P and Q, estimate Dφ(P,Q).

◮ Well-studied for φ(t) = t log t, t ∈ [0,∞), i.e., Kullback-Liebler
divergence.

◮ Approaches:

◮ Histogram estimator based on space partitioning scheme
[Wang et al., 2005].

◮ M-estimation based on the variational characterization
[Nguyen et al., 2008],

Dφ(P,Q) = sup
f :X→R

[
∫

X

f dP−

∫

X

φ
∗(f ) dQ

]

,

where φ∗ is the convex conjugate of φ.
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Properties of Estimators

◮ Computability

◮ Consistency

◮ Rate of convergence

Issues:

◮ Though the estimators of Dφ(P,Q) are consistent, their rate of
convergence can be arbitrarily slow depending on P and Q.

◮ Let X ⊂ Rd . For large d , the estimator proposed by
[Wang et al., 2005] is computationally inefficient.
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Integral Probability Metrics

◮ The integral probability metric [Müller, 1997] between P and Q is
defined as

γF(P,Q) = sup
f∈F

∣∣∣∣
∫

X

f dP−
∫

X

f dQ

∣∣∣∣ .

◮ Many popular probability metrics can be obtained by appropriately
choosing F.

◮ Total variation distance : F =
{

f : ‖f ‖∞ := supx∈X |f (x)| ≤ 1
}

.

◮ Wasserstein distance : F =
{

f : ‖f ‖L := supx 6=y∈X
|f (x)−f (y)|

ρ(x,y)
≤ 1

}

.

◮ Dudley metric : F = {f : ‖f ‖L + ‖f ‖∞ ≤ 1}.

◮ Lp metric : F = {f : ‖f ‖Lp(X ,µ) := (
∫

X
|f |p dµ)1/p ≤ 1, 1 ≤ p < ∞}.

◮ well-studied in probability theory, mass transporation problems, etc.



Outline

◮ Relation between γF(P,Q) and Dφ(P,Q)

◮ Estimation of γF(P,Q)

◮ Consistency analysis and rate of convergence



γF(P,Q) vs. Dφ(P,Q)

Dφ,F(P,Q) := sup
f∈F

[∫

X

f dP−
∫

X

φ∗(f ) dQ

]

◮ Dφ,F(P,Q) = Dφ(P,Q) if F is the set of all real-valued measurable
functions on X .

◮ Dφ,F(P,Q) = γF(P,Q) if φ(t) =

{
0, t = 1

+∞, t 6= 1
.

◮ Dφ(P,Q) = γF(P,Q) if and only if any one of the following hold:

(i) F = {f : ‖f ‖∞ ≤ β−α
2

} and φ(t) =

{

α(t − 1), 0 ≤ t ≤ 1
β(t − 1), t ≥ 1

for

some α < β < ∞.

(ii) F = {f : f = c, c ∈ R}, φ(t) = α(t − 1), t ≥ 0, α ∈ R

◮ Total-variation is the only φ-divergence that is also an integral
probability metric.
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Estimation of γF(P,Q)

◮ Given random samples {X1, . . . ,Xm} and {Y1, . . . ,Yn} drawn i.i.d.
from P and Q, estimate γF(P,Q).

◮ Estimator:

γF(Pm,Qn) = sup
f∈F

[
1

m

m∑

i=1

f (Xi )−
1

n

n∑

i=1

f (Yi )

]
,

where Pm := 1
m

∑m

i=1 δXi
and Qn := 1

n

∑n

i=1 δYi
.

◮ Computability: Possible for certain choices of F.

◮ F = {f : ‖f ‖∞ ≤ 1}

◮ F = {f : ‖f ‖L ≤ 1}

◮ F = {f : ‖f ‖L + ‖f ‖∞ ≤ 1}

◮ F = {f : ‖f ‖H ≤ 1} where H is a reproducing kernel Hilbert space.

◮ Consistency and rate of convergence: determined by the “size” of F.
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Estimation of γF(P,Q)

V := {X1, . . . ,Xm,Y1, . . . ,Yn}, S := { 1
m
, . . . , 1

m
,− 1

n
, . . . ,− 1

n
},

N := m + n.

Theorem

◮ F = {f : ‖f ‖L ≤ 1}: γF(Pm,Qn) =
∑N

i=1 Sia
∗
i , where

{a∗i }Ni=1 = argmax
{ N∑

i=1

Siai : −ρ(Vi ,Vj) ≤ ai−aj ≤ ρ(Vi ,Vj), ∀ i , j
}
.

◮ F = {f : ‖f ‖L + ‖f ‖∞ ≤ 1}: γF(Pm,Qn) =
∑N

i=1 Sib
∗
i , where

{b∗i }Ni=1 = arg max
b1,...,bN ,e,c

N∑

i=1

Sibi

s.t. −e ρ(Vi ,Vj) ≤ bi − bj ≤ e ρ(Vi ,Vj), ∀ i , j
−c ≤ bi ≤ c , ∀ i , e + c ≤ 1.
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Estimation of γF(P,Q)

F = {f : ‖f ‖H ≤ 1}, where H is a reproducing kernel Hilbert space
(RKHS).

Definition
A Hilbert space H is said to be an RKHS if the evaluation functionals
(δx(f ) = f (x), x ∈ X , f ∈ H) are bounded and continuous.

◮ There exists a unique kernel, k : X × X → R such that
∀x ∈ X , ∀ f ∈ H, 〈f , k(·, x)〉H = f (x).

◮ k is the reproducing kernel (r.k.) of H as
k(x , y) = 〈k(·, x), k(·, y)〉H, x , y ∈ X .

◮ Every r.k. is a positive definite function.

◮ For every positive definite function, k on X × X , there exists a
unique RKHS, H as k as its r.k.

◮ Example: k(x , y) = e−|x−y |, x , y ∈ R induces a Sobolev space.
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Estimation of γF(P,Q)

V := {X1, . . . ,Xm,Y1, . . . ,Yn}, S := { 1
m
, . . . , 1

m
,− 1

n
, . . . ,− 1

n
},

N := m + n.

Theorem
Let F = {f : ‖f ‖H ≤ 1} with k being bounded and measurable. Then

γF(Pm,Qn) =

√√√√
N∑

i,j=1

SiSjk(Vi ,Vj).



Outline

◮ Relation between γF(P,Q) and Dφ(P,Q)

◮ Estimation of γF(P,Q)

◮ Consistency analysis and rate of convergence



Consistency and Rate of Convergence

Theorem
Suppose F be such that ν := supf∈F,x∈X |f (x)| < ∞. Fix δ ∈ (0, 1).
Then with probability 1− δ over the choice of samples, {Xi}mi=1 and
{Yi}ni=1, the following holds:

|γF(Pm,Qn)− γF(P,Q)| ≤
√

18ν2 log
4

δ

(
1√
m

+
1√
n

)

+2Rm(F; {Xi}) + 2Rn(F; {Yi}),

where

Rm(F; {xi}mi=1) := Eσ sup
f∈F

∣∣∣∣∣
1

m

m∑

i=1

σi f (xi )

∣∣∣∣∣ ,

is called the Rademacher complexity of F and {σi} are independent
Rademacher random variables defined as σi = 2Bi − 1, with {Bi} being
Bernoulli random variables.



Consistency and Rate of Convergence

Note that if Rm(F; {Xi}mi=1) = OP(rm) and Rn(F; {Yi}ni=1) = OQ(rn),
then

|γF(Pm,Qn)− γF(P,Q)| = OP,Q(rm ∨ m−1/2 + rn ∨ n−1/2),

where a ∨ b := max(a, b).

Theorem ([von Luxburg and Bousquet, 2004])
For every ǫ > 0, the following holds:

Rm(F; {xi}mi=1) ≤ 2ǫ+
4
√
2

m

∫ ∞

ǫ/4

√
logN (τ,F, L2(Pm)) dτ.



Consistency and Rate of Convergence

Corollary

◮ Let X be a bounded subset of (Rd , ‖ · ‖s) for some 1 ≤ s ≤ ∞.
Then, for F = {f : ‖f ‖L ≤ 1} and F = {f : ‖f ‖∞ + ‖f ‖L ≤ 1}, we
have

|γF(Pm,Qn)− γF(P,Q)| = OP,Q(rm + rn)

where

rm =

{
m−1/2 logm, d = 1
m−1/(d+1), d ≥ 2

.

In addition if X is a bounded, convex subset of (Rd , ‖ · ‖s) with
non-empty interior, then

rm =





m−1/2, d = 1
m−1/2 logm, d = 2

m−1/d , d > 2

.



Consistency and Rate of Convergence

Corollary

◮ Let X be a measurable space. Suppose k is measurable and
supx∈M k(x , x) ≤ C < ∞. Then, for F = {f : ‖f ‖H ≤ 1}, we have

|γF(Pm,Qn)− γF(P,Q)| = OP,Q(m
−1/2 + n−1/2).

Examples:

◮ Gaussian kernel: k(x , y) = e−σ‖x−y‖2
2 , σ > 0, x , y ∈ Rd

◮ Laplacian kernel: k(x , y) = e−σ‖x−y‖1 , σ > 0, x , y ∈ Rd

◮ Inverse multi-quadratic kernel: k(x , y) = (c2 + ‖x − y‖22)−t , c > 0,
t > d/2, x , y ∈ Rd .



Estimation of Total Variation Distance

Total variation distance is both a φ-divergence and integral probability
metric given by

TV (P,Q) = sup
{∫

X

f d(P−Q) : ‖f ‖∞ ≤ 1
}
.

◮ Estimator: TV (Pm,Qn) =
∑N

i=1 Sia
∗
i where {a∗i }Ni=1 solve the linear

program:

max
{ N∑

i=1

Siai : −1 ≤ ai ≤ 1, ∀ i
}
.

Easy to see that a∗i = sign(Si ) and therefore TV (Pm,Qn) = 2 for
any m, n. Not consistent.

◮ Can be estimated consistently using kernel density estimators.



Lower Bounds on Total Variation Distance
◮ W (P,Q) = sup{

∫
X
f d(P−Q) : ‖f ‖L ≤ 1}

◮ β(P,Q) = sup{
∫
X
f d(P−Q) : ‖f ‖L + ‖f ‖∞ ≤ 1}

◮ γk(P,Q) = sup{
∫
X
f d(P−Q) : ‖f ‖H ≤ 1}

Theorem

(i) For all P 6= Q, we have

TV (P,Q) ≥ W (P,Q)β(P,Q)

W (P,Q)− β(P,Q)
.

(ii) Suppose C := supx∈X k(x , x) < ∞. Then

TV (P,Q) ≥ γk(P,Q)√
C

.

◮ Lower bounds on Kullback-Leibler divergence through Pinsker’s
inequality.



Summary

◮ Integral probability metrics vs. φ-divergences.

◮ Estimation of integral probability metrics from finite samples: easily
computable compared to φ-divergences.

◮ Fast rates of convergence compared to φ-divergences.

◮ Open question: Minimax rates for estimating integral probability
metrics.



Thank You
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