Non-parameteric Estimation of Integral Probability Metrics

Bharath K. Sriperumbudur*, Kenji Fukumizu[†], Arthur Gretton^{‡,×}, Bernhard Schölkopf[×] and Gert R. G. Lanckriet^{*}

> *UC San Diego [†]The Institute of Statistical Mathematics [‡] CMU [×]MPI for Biological Cybernetics

> > ISIT 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ 少久(~

Probability Metrics

- ► X : measurable space.
- \mathscr{P} : set of all probability measures defined on X.
- ► $\gamma : \mathscr{P} \times \mathscr{P} \to \mathbb{R}^+$ is a notion of distance on \mathscr{P} , called the *probability metric*.

Popular example: ϕ -divergence

$$D_{\phi}(\mathbb{P},\mathbb{Q}) := \left\{ egin{array}{ll} \int_X \phi\left(rac{d\mathbb{P}}{d\mathbb{Q}}
ight) d\mathbb{Q}, & \mathbb{P} \ll \mathbb{Q} \ +\infty, & ext{otherwise} \end{array}
ight,,$$

where $\phi : [0, \infty) \to (-\infty, \infty]$ is a convex function.

Appropriate choice of ϕ : Kullback-Leibler divergence, Jensen-Shannon divergence, Total-variation distance, Hellinger distance, χ^2 -distance.

Probability Metrics

- X : measurable space.
- \mathscr{P} : set of all probability measures defined on X.
- ▶ $\gamma : \mathscr{P} \times \mathscr{P} \to \mathbb{R}^+$ is a notion of distance on \mathscr{P} , called the *probability metric*.

Popular example: ϕ -divergence

$$D_{\phi}(\mathbb{P},\mathbb{Q}) := \left\{ egin{array}{cc} \int_X \phi\left(rac{d\mathbb{P}}{d\mathbb{Q}}
ight) \, d\mathbb{Q}, & \mathbb{P} \ll \mathbb{Q} \ +\infty, & ext{otherwise} \end{array}
ight,$$

where $\phi : [0,\infty) \to (-\infty,\infty]$ is a convex function.

Appropriate choice of ϕ : Kullback-Leibler divergence, Jensen-Shannon divergence, Total-variation distance, Hellinger distance, χ^2 -distance.

Applications

Two-sample problem:

- ► Given random samples {X₁,..., X_m} and {Y₁,..., Y_n} drawn i.i.d. from P and Q, respectively.
- *Determine:* are \mathbb{P} and \mathbb{Q} different?

Applications

Two-sample problem:

- ► Given random samples {X₁,..., X_m} and {Y₁,..., Y_n} drawn i.i.d. from P and Q, respectively.
- *Determine:* are \mathbb{P} and \mathbb{Q} different?

 $\triangleright \gamma(\mathbb{P}, \mathbb{Q})$: distance metric between \mathbb{P} and \mathbb{Q} .

$$egin{aligned} & \mathcal{H}_0:\mathbb{P}=\mathbb{Q} & \mathcal{H}_0:\gamma(\mathbb{P},\mathbb{Q})=0 \ & \equiv & \ & \mathcal{H}_1:\mathbb{P}\neq\mathbb{Q} & \mathcal{H}_1:\gamma(\mathbb{P},\mathbb{Q})>0 \end{aligned}$$

• Test: Say H_0 if $\widehat{\gamma}(\mathbb{P}, \mathbb{Q}) < \varepsilon$. Otherwise say H_1 .

Applications

Two-sample problem:

- ► Given random samples {X₁,..., X_m} and {Y₁,..., Y_n} drawn i.i.d. from P and Q, respectively.
- *Determine:* are \mathbb{P} and \mathbb{Q} different?

• $\gamma(\mathbb{P}, \mathbb{Q})$: distance metric between \mathbb{P} and \mathbb{Q} .

$$egin{aligned} & \mathcal{H}_0:\mathbb{P}=\mathbb{Q} & \mathcal{H}_0:\gamma(\mathbb{P},\mathbb{Q})=0 \ & \equiv & \ & \mathcal{H}_1:\mathbb{P}\neq\mathbb{Q} & \mathcal{H}_1:\gamma(\mathbb{P},\mathbb{Q})>0 \end{aligned}$$

• Test: Say H_0 if $\widehat{\gamma}(\mathbb{P}, \mathbb{Q}) < \varepsilon$. Otherwise say H_1 .

Other applications:

- Hypothesis testing : Independence test, Goodness of fit test, etc.
- Limit theorems (central limit theorem), density estimation, etc.

- ► Given random samples {X₁,...,X_m} and {Y₁,...,Y_n} drawn i.i.d. from P and Q, estimate D_φ(P,Q).
- Well-studied for φ(t) = t log t, t ∈ [0,∞), i.e., Kullback-Liebler divergence.

► Approaches:

- Histogram estimator based on space partitioning scheme [Wang et al., 2005].
- M-estimation based on the variational characterization [Nguyen et al., 2008],

$$D_{\phi}(\mathbb{P},\mathbb{Q}) = \sup_{f:X o \mathbb{R}} \left[\int_X f \, d\mathbb{P} - \int_X \phi^*(f) \, d\mathbb{Q}
ight],$$

- ► Given random samples {X₁,...,X_m} and {Y₁,...,Y_n} drawn i.i.d. from P and Q, estimate D_φ(P,Q).
- Well-studied for φ(t) = t log t, t ∈ [0,∞), i.e., Kullback-Liebler divergence.

Approaches:

- Histogram estimator based on space partitioning scheme [Wang et al., 2005].
- M-estimation based on the variational characterization [Nguyen et al., 2008],

$$D_{\phi}(\mathbb{P},\mathbb{Q}) = \sup_{f:X o \mathbb{R}} \left[\int_X f \, d\mathbb{P} - \int_X \phi^*(f) \, d\mathbb{Q}
ight],$$

- ► Given random samples {X₁,...,X_m} and {Y₁,...,Y_n} drawn i.i.d. from P and Q, estimate D_φ(P,Q).
- Well-studied for φ(t) = t log t, t ∈ [0,∞), i.e., Kullback-Liebler divergence.

• Approaches:

- Histogram estimator based on space partitioning scheme [Wang et al., 2005].
- M-estimation based on the variational characterization [Nguyen et al., 2008],

$$D_{\phi}(\mathbb{P},\mathbb{Q}) = \sup_{f:X o \mathbb{R}} \left[\int_X f \, d\mathbb{P} - \int_X \phi^*(f) \, d\mathbb{Q}
ight],$$

- ► Given random samples {X₁,...,X_m} and {Y₁,...,Y_n} drawn i.i.d. from P and Q, estimate D_φ(P,Q).
- Well-studied for φ(t) = t log t, t ∈ [0,∞), i.e., Kullback-Liebler divergence.

• Approaches:

- Histogram estimator based on space partitioning scheme [Wang et al., 2005].
- M-estimation based on the variational characterization [Nguyen et al., 2008],

$$D_{\phi}(\mathbb{P},\mathbb{Q}) = \sup_{f:X
ightarrow \mathbb{R}} \left[\int_X f \, d\mathbb{P} - \int_X \phi^*(f) \, d\mathbb{Q}
ight],$$

Properties of Estimators

Computability

Consistency

Rate of convergence

lssues:

► Though the estimators of D_φ(P, Q) are consistent, their rate of convergence can be arbitrarily slow depending on P and Q.

▶ Let $X \subset \mathbb{R}^d$. For large *d*, the estimator proposed by [Wang et al., 2005] is *computationally inefficient*.

Properties of Estimators

Computability

Consistency

Rate of convergence

Issues:

- ► Though the estimators of D_φ(P, Q) are consistent, their rate of convergence can be arbitrarily slow depending on P and Q.
- Let $X \subset \mathbb{R}^d$. For large d, the estimator proposed by [Wang et al., 2005] is *computationally inefficient*.

Integral Probability Metrics

► The integral probability metric [Müller, 1997] between P and Q is defined as

$$\gamma_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \sup_{f\in\mathcal{F}} \left| \int_X f \, d\mathbb{P} - \int_X f \, d\mathbb{Q} \right|.$$

- Many popular probability metrics can be obtained by appropriately choosing *F*.
 - Total variation distance : $\mathcal{F} = \{f : ||f||_{\infty} := \sup_{x \in X} |f(x)| \le 1\}.$
 - Wasserstein distance : $\mathcal{F} = \left\{ f : \|f\|_L := \sup_{x \neq y \in X} \frac{|f(x) f(y)|}{\rho(x,y)} \leq 1 \right\}.$
 - Dudley metric : $\mathcal{F} = \{f : ||f||_L + ||f||_\infty \le 1\}.$
 - L^p metric : $\mathcal{F} = \{f : ||f||_{L^p(X,\mu)} := (\int_X |f|^p \, d\mu)^{1/p} \le 1, \, 1 \le p < \infty\}.$

well-studied in probability theory, mass transporation problems, etc.

Outline

- Relation between $\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})$ and $D_{\phi}(\mathbb{P},\mathbb{Q})$
- Estimation of $\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})$
- Consistency analysis and rate of convergence

$\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})$ vs. $D_{\phi}(\mathbb{P},\mathbb{Q})$

$$D_{\phi,\mathfrak{F}}(\mathbb{P},\mathbb{Q}) := \sup_{f\in\mathfrak{F}} \left[\int_X f \, d\mathbb{P} - \int_X \phi^*(f) \, d\mathbb{Q}
ight]$$

▶ D_{φ,𝔅}(𝒫, 𝒫) = D_φ(𝒫, 𝒫) if 𝔅 is the set of all real-valued measurable functions on X.

$$\blacktriangleright \ D_{\phi, \mathcal{F}}(\mathbb{P}, \mathbb{Q}) = \gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) \text{ if } \phi(t) = \left\{ \begin{array}{ll} 0, & t = 1 \\ +\infty, & t \neq 1 \end{array} \right.$$

► $D_{\phi}(\mathbb{P}, \mathbb{Q}) = \gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q})$ if and only if any one of the following hold:

(i) $\mathcal{F} = \{f : \|f\|_{\infty} \leq \frac{\beta - \alpha}{2}\}$ and $\phi(t) = \begin{cases} \alpha(t-1), & 0 \leq t \leq 1\\ \beta(t-1), & t \geq 1 \end{cases}$ for some $\alpha < \beta < \infty$.

(ii) $\mathcal{F} = \{ f : f = c, c \in \mathbb{R} \}, \phi(t) = \alpha(t-1), t \ge 0, \alpha \in \mathbb{R} \}$

► Total-variation is the only φ-divergence that is also an integral probability metric.

$\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})$ vs. $D_{\phi}(\mathbb{P},\mathbb{Q})$

$$D_{\phi,\mathfrak{F}}(\mathbb{P},\mathbb{Q}) := \sup_{f\in\mathfrak{F}} \left[\int_X f \, d\mathbb{P} - \int_X \phi^*(f) \, d\mathbb{Q}
ight]$$

▶ D_{φ,𝔅}(𝒫, 𝒫) = D_φ(𝒫, 𝒫) if 𝔅 is the set of all real-valued measurable functions on X.

$$\blacktriangleright \ D_{\phi, \mathfrak{F}}(\mathbb{P}, \mathbb{Q}) = \gamma_{\mathfrak{F}}(\mathbb{P}, \mathbb{Q}) \text{ if } \phi(t) = \begin{cases} 0, & t = 1 \\ +\infty, & t \neq 1 \end{cases}$$

► $D_{\phi}(\mathbb{P}, \mathbb{Q}) = \gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q})$ if and only if any one of the following hold:

(i) $\mathcal{F} = \{f : \|f\|_{\infty} \leq \frac{\beta - \alpha}{2}\}$ and $\phi(t) = \begin{cases} \alpha(t-1), & 0 \leq t \leq 1\\ \beta(t-1), & t \geq 1 \end{cases}$ for some $\alpha < \beta < \infty$.

(ii) $\mathfrak{F} = \{ f : f = c, c \in \mathbb{R} \}, \phi(t) = \alpha(t-1), t \ge 0, \alpha \in \mathbb{R} \}$

► Total-variation is the only φ-divergence that is also an integral probability metric.

$$\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})$$
 vs. $\mathcal{D}_{\phi}(\mathbb{P},\mathbb{Q})$

$$D_{\phi,\mathfrak{F}}(\mathbb{P},\mathbb{Q}) := \sup_{f\in\mathfrak{F}} \left[\int_X f \, d\mathbb{P} - \int_X \phi^*(f) \, d\mathbb{Q}
ight]$$

▶ D_{φ,𝔅}(𝒫, 𝒫) = D_φ(𝒫, 𝒫) if 𝔅 is the set of all real-valued measurable functions on X.

$$\blacktriangleright \ D_{\phi,\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \gamma_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) \text{ if } \phi(t) = \begin{cases} 0, & t = 1 \\ +\infty, & t \neq 1 \end{cases}$$

• $D_{\phi}(\mathbb{P}, \mathbb{Q}) = \gamma_{\mathfrak{F}}(\mathbb{P}, \mathbb{Q})$ if and only if any one of the following hold:

(i)
$$\mathcal{F} = \{f : \|f\|_{\infty} \leq \frac{\beta - \alpha}{2}\}$$
 and $\phi(t) = \begin{cases} \alpha(t-1), & 0 \leq t \leq 1\\ \beta(t-1), & t \geq 1 \end{cases}$ for some $\alpha < \beta < \infty$.

(ii)
$$\mathcal{F} = \{f : f = c, c \in \mathbb{R}\}, \phi(t) = \alpha(t-1), t \ge 0, \alpha \in \mathbb{R}\}$$

Total-variation is the only \u03c6-divergence that is also an integral probability metric.

$$\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})$$
 vs. $\mathcal{D}_{\phi}(\mathbb{P},\mathbb{Q})$

$$D_{\phi,\mathfrak{F}}(\mathbb{P},\mathbb{Q}) := \sup_{f\in\mathfrak{F}} \left[\int_X f \, d\mathbb{P} - \int_X \phi^*(f) \, d\mathbb{Q}
ight]$$

▶ D_{φ,𝔅}(𝔅, 𝔅) = D_φ(𝔅, 𝔅) if 𝔅 is the set of all real-valued measurable functions on X.

$$\blacktriangleright \ D_{\phi,\mathcal{F}}(\mathbb{P},\mathbb{Q}) = \gamma_{\mathcal{F}}(\mathbb{P},\mathbb{Q}) \text{ if } \phi(t) = \begin{cases} 0, & t = 1 \\ +\infty, & t \neq 1 \end{cases}$$

• $D_{\phi}(\mathbb{P}, \mathbb{Q}) = \gamma_{\mathfrak{F}}(\mathbb{P}, \mathbb{Q})$ if and only if any one of the following hold:

(i)
$$\mathcal{F} = \{f : \|f\|_{\infty} \leq \frac{\beta - \alpha}{2}\}$$
 and $\phi(t) = \begin{cases} \alpha(t-1), & 0 \leq t \leq 1\\ \beta(t-1), & t \geq 1 \end{cases}$ for some $\alpha < \beta < \infty$.

(ii)
$$\mathfrak{F} = \{ f : f = c, c \in \mathbb{R} \}, \phi(t) = \alpha(t-1), t \ge 0, \alpha \in \mathbb{R} \}$$

Total-variation is the only \u03c6-divergence that is also an integral probability metric.

Outline

- ▶ Relation between $\gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q})$ and $D_{\phi}(\mathbb{P}, \mathbb{Q})$
- Estimation of $\gamma_{\mathcal{F}}(\mathbb{P},\mathbb{Q})$
- Consistency analysis and rate of convergence

► Given random samples {X₁,...,X_m} and {Y₁,...,Y_n} drawn i.i.d. from P and Q, estimate γ_F(P,Q).

• Estimator:

$$\gamma_{\mathcal{F}}(\mathbb{P}_m,\mathbb{Q}_n) = \sup_{f\in\mathcal{F}}\left[\frac{1}{m}\sum_{i=1}^m f(X_i) - \frac{1}{n}\sum_{i=1}^n f(Y_i)\right],$$

where
$$\mathbb{P}_m := \frac{1}{m} \sum_{i=1}^m \delta_{X_i}$$
 and $\mathbb{Q}_n := \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$.

► *Computability:* Possible for certain choices of *F*.

- $\blacktriangleright \ \mathcal{F} = \{f: \|f\|_{\infty} \leq 1\}$
- $\blacktriangleright \mathcal{F} = \{f : \|f\|_L \leq 1\}$
- $\mathcal{F} = \{ f : \|f\|_L + \|f\|_\infty \le 1 \}$
- $\mathcal{F} = \{f : ||f||_{\mathcal{H}} \leq 1\}$ where \mathcal{H} is a *reproducing kernel Hilbert space*.

► Consistency and rate of convergence: determined by the "size" of \mathcal{F} .

► Given random samples {X₁,...,X_m} and {Y₁,...,Y_n} drawn i.i.d. from P and Q, estimate γ_F(P,Q).

• Estimator:

$$\gamma_{\mathcal{F}}(\mathbb{P}_m, \mathbb{Q}_n) = \sup_{f \in \mathcal{F}} \left[\frac{1}{m} \sum_{i=1}^m f(X_i) - \frac{1}{n} \sum_{i=1}^n f(Y_i) \right],$$

where $\mathbb{P}_m := \frac{1}{m} \sum_{i=1}^m \delta_{X_i}$ and $\mathbb{Q}_n := \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$.

• Computability: Possible for certain choices of \mathcal{F} .

- $\blacktriangleright \ \mathcal{F} = \{f: \|f\|_{\infty} \leq 1\}$
- $\blacktriangleright \mathcal{F} = \{f : \|f\|_L \leq 1\}$
- $\mathcal{F} = \{ f : \|f\|_L + \|f\|_\infty \le 1 \}$
- $\mathcal{F} = \{f : ||f||_{\mathcal{H}} \leq 1\}$ where \mathcal{H} is a *reproducing kernel Hilbert space*.

► Consistency and rate of convergence: determined by the "size" of \mathcal{F} .

< ロ > < 団 > < 臣 > < 臣 > < 臣 < の < @

► Given random samples {X₁,..., X_m} and {Y₁,..., Y_n} drawn i.i.d. from P and Q, estimate γ_F(P,Q).

• Estimator:

$$\gamma_{\mathcal{F}}(\mathbb{P}_m, \mathbb{Q}_n) = \sup_{f \in \mathcal{F}} \left[\frac{1}{m} \sum_{i=1}^m f(X_i) - \frac{1}{n} \sum_{i=1}^n f(Y_i) \right],$$

where
$$\mathbb{P}_m := \frac{1}{m} \sum_{i=1}^m \delta_{X_i}$$
 and $\mathbb{Q}_n := \frac{1}{n} \sum_{i=1}^n \delta_{Y_i}$.

• Computability: Possible for certain choices of \mathcal{F} .

$$\blacktriangleright \ \mathcal{F} = \{f: \|f\|_{\infty} \leq 1\}$$

$$\blacktriangleright \mathcal{F} = \{f : \|f\|_L \leq 1\}$$

•
$$\mathcal{F} = \{ f : \|f\|_L + \|f\|_\infty \le 1 \}$$

• $\mathcal{F} = \{f : ||f||_{\mathcal{H}} \leq 1\}$ where \mathcal{H} is a *reproducing kernel Hilbert space*.

► Consistency and rate of convergence: determined by the "size" of \mathcal{F} .

$$V := \{X_1, \dots, X_m, Y_1, \dots, Y_n\}, S := \{\frac{1}{m}, \dots, \frac{1}{m}, -\frac{1}{n}, \dots, -\frac{1}{n}\}, N := m + n.$$

Theorem

• $\mathcal{F} = \{f : \|f\|_L \leq 1\}: \gamma_{\mathcal{F}}(\mathbb{P}_m, \mathbb{Q}_n) = \sum_{i=1}^N S_i a_i^*, \text{ where }$

$$\{a_i^*\}_{i=1}^N = rg\max\Big\{\sum_{i=1}^N S_i a_i : -
ho(V_i, V_j) \le a_i - a_j \le
ho(V_i, V_j), \forall i, j\Big\}.$$

• $\mathcal{F} = \{f : \|f\|_L + \|f\|_{\infty} \le 1\}: \gamma_{\mathcal{F}}(\mathbb{P}_m, \mathbb{Q}_n) = \sum_{i=1}^N S_i b_i^*, \text{ where }$

$$\{b_i^*\}_{i=1}^N = \arg \max_{b_1, \dots, b_N, e, c} \sum_{i=1}^N S_i b_i$$

s.t.
$$-e \rho(V_i, V_j) \le b_i - b_j \le e \rho(V_i, V_j), \forall i, j$$

$$-c \le b_i \le c, \forall i, e+c \le 1.$$

$$V := \{X_1, \dots, X_m, Y_1, \dots, Y_n\}, S := \{\frac{1}{m}, \dots, \frac{1}{m}, -\frac{1}{n}, \dots, -\frac{1}{n}\}, N := m + n.$$

Theorem

• $\mathcal{F} = \{f : \|f\|_L \leq 1\}$: $\gamma_{\mathcal{F}}(\mathbb{P}_m, \mathbb{Q}_n) = \sum_{i=1}^N S_i a_i^*$, where

$$\{a_i^*\}_{i=1}^N = rg\max\Big\{\sum_{i=1}^N S_ia_i : -
ho(V_i,V_j) \le a_i - a_j \le
ho(V_i,V_j), orall i,j\Big\}.$$

• $\mathcal{F} = \{f : \|f\|_L + \|f\|_\infty \le 1\}$: $\gamma_{\mathcal{F}}(\mathbb{P}_m, \mathbb{Q}_n) = \sum_{i=1}^N S_i b_i^*$, where

$$\{b_i^*\}_{i=1}^N = \arg \max_{b_1, \dots, b_N, e, c} \qquad \sum_{i=1}^N S_i b_i \\ s.t. \qquad -e \rho(V_i, V_j) \le b_i - b_j \le e \rho(V_i, V_j), \forall i, j \\ -c \le b_i \le c, \forall i, e+c \le 1.$$

$\mathcal{F} = \{f : \|f\|_{\mathcal{H}} \leq 1\}$, where \mathcal{H} is a reproducing kernel Hilbert space (RKHS).

Definition

- There exists a unique kernel, $k : X \times X \to \mathbb{R}$ such that $\forall x \in X, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x).$
- ▶ k is the reproducing kernel (r.k.) of \mathcal{H} as $k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}, x, y \in X.$
- Every r.k. is a positive definite function.
- ► For every positive definite function, k on X × X, there exists a unique RKHS, H as k as its r.k.
- ► *Example:* $k(x, y) = e^{-|x-y|}, x, y \in \mathbb{R}$ induces a Sobolev space.

 $\mathcal{F} = \{f : ||f||_{\mathcal{H}} \leq 1\}$, where \mathcal{H} is a reproducing kernel Hilbert space (RKHS).

Definition

- There exists a unique kernel, $k : X \times X \to \mathbb{R}$ such that $\forall x \in X, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x).$
- ▶ k is the reproducing kernel (r.k.) of \mathcal{H} as $k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}, x, y \in X.$
- Every r.k. is a positive definite function.
- ► For every positive definite function, k on X × X, there exists a unique RKHS, H as k as its r.k.
- ► *Example:* $k(x, y) = e^{-|x-y|}, x, y \in \mathbb{R}$ induces a Sobolev space.

 $\mathcal{F} = \{f : ||f||_{\mathcal{H}} \leq 1\}$, where \mathcal{H} is a reproducing kernel Hilbert space (RKHS).

Definition

- There exists a unique kernel, $k : X \times X \to \mathbb{R}$ such that $\forall x \in X, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x).$
- ▶ k is the reproducing kernel (r.k.) of H as $k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}, x, y \in X.$
- Every r.k. is a positive definite function.
- ► For every positive definite function, k on X × X, there exists a unique RKHS, H as k as its r.k.
- ► *Example:* $k(x, y) = e^{-|x-y|}, x, y \in \mathbb{R}$ induces a Sobolev space.

 $\mathcal{F} = \{f : ||f||_{\mathcal{H}} \leq 1\}$, where \mathcal{H} is a reproducing kernel Hilbert space (RKHS).

Definition

- There exists a unique kernel, $k : X \times X \to \mathbb{R}$ such that $\forall x \in X, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x).$
- k is the reproducing kernel (r.k.) of ℋ as k(x,y) = ⟨k(·,x), k(·,y)⟩_ℋ, x, y ∈ X.
- Every r.k. is a positive definite function.
- ► For every positive definite function, k on X × X, there exists a unique RKHS, H as k as its r.k.
- Example: $k(x, y) = e^{-|x-y|}, x, y \in \mathbb{R}$ induces a Sobolev space.

$$V := \{X_1, \dots, X_m, Y_1, \dots, Y_n\}, S := \{\frac{1}{m}, \dots, \frac{1}{m}, -\frac{1}{n}, \dots, -\frac{1}{n}\}, N := m + n.$$

Theorem

Let $\mathcal{F} = \{f : ||f||_{\mathcal{H}} \leq 1\}$ with k being bounded and measurable. Then

$$\gamma_{\mathfrak{F}}(\mathbb{P}_m,\mathbb{Q}_n)=\sqrt{\sum_{i,j=1}^N S_i S_j k(V_i,V_j)}.$$

Outline

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Relation between $\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})$ and $D_{\phi}(\mathbb{P},\mathbb{Q})$
- Estimation of $\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})$
- Consistency analysis and rate of convergence

Theorem

Suppose \mathcal{F} be such that $\nu := \sup_{f \in \mathcal{F}, x \in X} |f(x)| < \infty$. Fix $\delta \in (0, 1)$. Then with probability $1 - \delta$ over the choice of samples, $\{X_i\}_{i=1}^m$ and $\{Y_i\}_{i=1}^n$, the following holds:

$$egin{aligned} &|\gamma_{\mathcal{F}}(\mathbb{P}_m,\mathbb{Q}_n)-\gamma_{\mathcal{F}}(\mathbb{P},\mathbb{Q})|\leq \sqrt{18
u^2\lograc{4}{\delta}}\left(rac{1}{\sqrt{m}}+rac{1}{\sqrt{n}}
ight)\ &+2R_m(\mathcal{F};\{X_i\})+2R_n(\mathcal{F};\{Y_i\}) \end{aligned}$$

where

$$R_m(\mathcal{F}; \{x_i\}_{i=1}^m) := \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} \left| \frac{1}{m} \sum_{i=1}^m \sigma_i f(x_i) \right|,$$

is called the Rademacher complexity of \mathcal{F} and $\{\sigma_i\}$ are independent Rademacher random variables defined as $\sigma_i = 2B_i - 1$, with $\{B_i\}$ being Bernoulli random variables.

Note that if $R_m(\mathcal{F}; \{X_i\}_{i=1}^m) = O_{\mathbb{P}}(r_m)$ and $R_n(\mathcal{F}; \{Y_i\}_{i=1}^n) = O_{\mathbb{Q}}(r_n)$, then

$$|\gamma_{\mathfrak{F}}(\mathbb{P}_m,\mathbb{Q}_n)-\gamma_{\mathfrak{F}}(\mathbb{P},\mathbb{Q})|=O_{\mathbb{P},\mathbb{Q}}(r_m\vee m^{-1/2}+r_n\vee n^{-1/2}),$$

where $a \lor b := \max(a, b)$.

Theorem ([von Luxburg and Bousquet, 2004]) For every $\epsilon > 0$, the following holds:

$$R_m(\mathcal{F}; \{x_i\}_{i=1}^m) \leq 2\epsilon + \frac{4\sqrt{2}}{m} \int_{\epsilon/4}^\infty \sqrt{\log \mathcal{N}(\tau, \mathcal{F}, L^2(\mathbb{P}_m))} \, d\tau$$

Corollary

 Let X be a bounded subset of (ℝ^d, || · ||_s) for some 1 ≤ s ≤ ∞. Then, for 𝔅 = {f : ||f||_L ≤ 1} and 𝔅 = {f : ||f||_∞ + ||f||_L ≤ 1}, we have

$$|\gamma_{\mathcal{F}}(\mathbb{P}_m, \mathbb{Q}_n) - \gamma_{\mathcal{F}}(\mathbb{P}, \mathbb{Q})| = O_{\mathbb{P}, \mathbb{Q}}(r_m + r_n)$$

where

$$r_m = \left\{ egin{array}{ccc} m^{-1/2} \log m, & d = 1 \ m^{-1/(d+1)}, & d \ge 2 \end{array}
ight.$$

In addition if X is a bounded, convex subset of $(\mathbb{R}^d, \|\cdot\|_s)$ with non-empty interior, then

$$r_m = \left\{ egin{array}{ccc} m^{-1/2}, & d = 1 \ m^{-1/2}\log m, & d = 2 \ m^{-1/d}, & d > 2 \end{array}
ight.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Corollary

Let X be a measurable space. Suppose k is measurable and sup_{x∈M} k(x,x) ≤ C < ∞. Then, for 𝔅 = {f : ||f||_𝔅 ≤ 1}, we have |γ_𝔅(𝔅_m, 𝔅_n) - γ_𝔅(𝔅, 𝔅)| = O_{𝔅,𝔅}(m^{-1/2} + n^{-1/2}).

Examples:

- Gaussian kernel: $k(x, y) = e^{-\sigma ||x-y||_2^2}, \sigma > 0, x, y \in \mathbb{R}^d$
- ► Laplacian kernel: $k(x, y) = e^{-\sigma ||x-y||_1}, \sigma > 0, x, y \in \mathbb{R}^d$
- ▶ Inverse multi-quadratic kernel: $k(x, y) = (c^2 + ||x y||_2^2)^{-t}$, c > 0, t > d/2, $x, y \in \mathbb{R}^d$.

Estimation of Total Variation Distance

Total variation distance is both a ϕ -divergence and integral probability metric given by

$$TV(\mathbb{P},\mathbb{Q}) = \sup \Big\{ \int_X f d(\mathbb{P}-\mathbb{Q}) : \|f\|_{\infty} \leq 1 \Big\}.$$

• Estimator: $TV(\mathbb{P}_m, \mathbb{Q}_n) = \sum_{i=1}^N S_i a_i^*$ where $\{a_i^*\}_{i=1}^N$ solve the linear program:

$$\max\Big\{\sum_{i=1}^N S_i a_i : -1 \le a_i \le 1, \forall i\Big\}.$$

Easy to see that $a_i^* = \operatorname{sign}(S_i)$ and therefore $TV(\mathbb{P}_m, \mathbb{Q}_n) = 2$ for any m, n. Not consistent.

Can be estimated consistently using kernel density estimators.

Lower Bounds on Total Variation Distance

- $\blacktriangleright W(\mathbb{P},\mathbb{Q}) = \sup\{\int_X f d(\mathbb{P}-\mathbb{Q}) : \|f\|_L \le 1\}$

Theorem

(i) For all $\mathbb{P} \neq \mathbb{Q}$, we have

$$TV(\mathbb{P},\mathbb{Q})\geq rac{W(\mathbb{P},\mathbb{Q})eta(\mathbb{P},\mathbb{Q})}{W(\mathbb{P},\mathbb{Q})-eta(\mathbb{P},\mathbb{Q})}.$$

(ii) Suppose $C := \sup_{x \in X} k(x, x) < \infty$. Then $TV(\mathbb{P}, \mathbb{Q}) \ge \frac{\gamma_k(\mathbb{P}, \mathbb{Q})}{\sqrt{C}}.$

Lower bounds on Kullback-Leibler divergence through Pinsker's inequality.

Summary

- Integral probability metrics vs. ϕ -divergences.
- Estimation of integral probability metrics from finite samples: easily computable compared to \u03c6-divergences.
- ► *Fast rates of convergence* compared to *φ*-divergences.
- Open question: Minimax rates for estimating integral probability metrics.

Thank You

▲□▶▲□▶▲≡▶▲■▶ ▲□▶

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで

