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Abstract—In this paper, we consider the problem of estimating
a density using a finite combination of densities from a given
class, C. Unlike previous works, where Kullback-Leibler (KL)
divergence is used as a notion of distance, in this paper, we
consider a distance measure based on the embedding of densities
into a reproducing kernel Hilbert space (RKHS). We analyze the
estimation and approximation errors for an M -estimator and
show the estimation error rate to be better than that obtained
with KL divergence while achieving the same approximation
error rate. Another advantage of the Hilbert space embedding
approach is that these results are achieved without making any
assumptions on C, in contrast to the KL divergence approach,
where the densities in C are assumed to be bounded (and away
from zero) with C having a finite Dudley entropy integral.

I. INTRODUCTION

The problem of density estimation deals with estimating
an unknown density, f , given an i.i.d. sample, S := {Xj}nj=1

drawn from it. One popular approach is parametric estimation,
where a particular parametric form is assumed for f and
the parameters are then estimated using the sample, S. In
this paper, we deal with mixture density estimation, which
is elaborated below.

Consider a parametric family of probability density func-
tions,

C :=
{
ϕθ(x) : θ ∈ Θ ⊂ Rd

}
over a measurable space, (X ,A ) with a base σ-finite measure
µ defined on A (whenever we mention that a probability
measure on A has a density, we mean it has a Radon-Nikodym
derivative with respect to µ). The class of k-component
mixtures gk is defined as

Gk :=

gk(x) =
k∑
j=1

λjϕθj (x), (λ)k ∈ ∆k, (θ)k ⊂ Θ

 ,

where

∆k :=

(λ1, . . . , λk) :
k∑
j=1

λj = 1, λj ≥ 0

 ,

(λ)k := (λ1, . . . , λk) and (θ)k := (θ1, . . . , θk). Now given
S, the goal is to estimate (λ)k and (θ)k so that gk is a good

approximation to f . Define the KL divergence between gk and
f as

D(f∥gk) :=
∫
X
f(x) log

f(x)

gk(x)
dµ(x).

The popular maximum likelihood estimator (MLE) is obtained
by minimizing the KL divergence between gk and S, given by

D(S∥gk) :=
1

n

n∑
i=1

log
f(Xi)

gk(Xi)
,

i.e., gmle
k = argmingk∈Gk

D(S∥gk) =
∑k
j=1 λ

∗
jϕθ∗j (x), where

((λ∗)k, (θ
∗)k) = arg max

(λ)k∈∆k,(θ)k⊂Θ

n∑
i=1

log
( k∑
j=1

λjϕθj (Xi)
)
.

Let us consider the convex hull of C defined as

G =

{
g(x) =

∫
Θ

ϕθ(x) dP(θ), P ∈M1
+(Θ)

}
,

which is the class of continuous convex combinations of
densities in C and M1

+(Θ) is the set of probability measures on
Θ. Under the assumption that supθ,θ′,x log

ϕθ(x)
ϕθ′ (x)

<∞, which
is satisfied if 0 < a ≤ ϕθ(x) ≤ b < ∞, ∀θ ∈ Θ, x ∈ X , Li
and Barron [1], [2] showed that for any f , there exists gk ∈ Gk
such that

D(f∥gk) ≤ inf
g∈G

D(f∥g) +O

(
1

k

)
, (1)

where the constants (which depend only on a and b) are
absorbed in the order notation. In particular, they showed that
gk ∈ Gk satisfying (1) can be constructed by the following
greedy procedure: Initialize g1 = ϕθ to minimize D(f∥g1)
and at step k construct gk from gk−1 by finding α and θ such
that

D(f∥gk) ≤ min
α,θ

D(f∥(1− α)gk−1(x) + αϕθ(x)).

Based on the above greedy algorithm, one can estimate f
greedily from S as ggre

k by choosing ϕθ at step k so that
n∑
i=1

log ggre
k (Xi) ≥ max

α,θ

n∑
i=1

log((1−α)g gre
k (Xi)+αϕθ(Xi)).



Note that the approximation bound in (1) also holds for the
maximum likelihood estimator. However, the advantage with
the greedy approach over MLE is that only two parameters
are optimized at a time instead of 2k parameters, therefore
reducing the complexity of the optimization problem.

Given gmle
k and ggre

k , Rakhlin et al. [3] improved on the
results of [1] and [2] by showing that for any gk ∈ Gk and for
any f ,

D(f∥ĝk)−D(f∥gk) ≤
c1
k
+
c2√
n
+c3

∫ b

0

√
logN (C, ϵ, dn)

n
dϵ,

where c1, c2 and c3 are some constants, ĝk is either gmle
k or ggre

k ,
d2n(ϕ1, ϕ2) := n−1

∑n
j=1(ϕ1(Xj)−ϕ2(Xj))

2 and N (C, ϵ, dn)
represents the ϵ-covering number of C. Therefore, if the above
integral is finite and is of the order of n−1/2, we have

D(f∥ĝk)−D(f∥gk) ≤ O

(
1

k

)
+Of

(
1√
n

)
. (2)

Combining (1), which characterizes the approximation error,
and (2), which characterizes the estimation error, we have

D(f∥ĝk)− inf
g∈G

D(f∥g) ≤ O

(
1

k

)
+Of

(
1√
n

)
, (3)

which shows that as n → ∞ and k → ∞, the approximation
to f in terms of gmle

k or ggre
k approaches the best possible

approximation to f in G. Overall, though (3) is a nice result,
it assumes that f and ϕθ are bounded (and away from zero)
and the class C is not large enough so that the entropy integral
(shown above) is finite. To avoid problems near zero (which
is why the densities are assumed to be bounded away from
zero), [4] considered Hellinger distance to analyze the rates of
convergence for MLE in mixture models. However, the bounds
depend on the entropy integral of G, which is undesirable as G
is a much larger class than C and therefore the entropy integral
associated with G need not exist even if the one associated with
C exists.

To address these issues, in this paper, we propose to use
a distance metric (we refer to it as the kernel distance)
based on the notion of embedding probability measures into
a reproducing kernel Hilbert space (RKHS) [5]–[8]. Using
this metric, we consider an M -estimator for which we show
in Section III that without requiring any assumptions on f
and C, a faster rate of Of (n−1/2) for the estimation error
and a similar rate of O(k−1/2) for the approximation error
can be achieved (see footnote 1 for an explanation about the
comparison of these rates). Before presenting our results, we
provide a brief review of RKHS and the notion of embedding
measures into RKHS in Section II.

II. RKHS EMBEDDING OF PROBABILITY MEASURES

In this section, we provide a brief overview of RKHS and
the notion of embedding probability measures into an RKHS.
First, we start with the definition of an RKHS, which we quote
from [6].

Definition 1 (Reproducing kernel Hilbert space): A func-
tion K : X × X → R, (x, y) 7→ K(x, y) is a reproducing

kernel of the Hilbert space H if and only if the following
hold:

(i) ∀ y ∈ X , K(·, y) ∈ H

(ii) ∀ y ∈ X , ∀ f ∈ H, ⟨f,K(·, y)⟩H = f(y).

H is called a reproducing kernel Hilbert space.
It can be shown that every reproducing kernel (r.k.), K is
symmetric and positive definite. Conversely, Moore-Aronszajn
theorem states that for every positive definite kernel, K, there
exists a unique RKHS, H for which K is the r.k. Examples of
K include exp(−σ∥x−y∥22), exp(−σ∥x−y∥1), ⟨x, y⟩2, x, y ∈
Rd, σ > 0, etc.

Given a measurable and bounded kernel, K, any P ∈
M1

+(X ) can be embedded into H [6], [7] as

P 7→
∫
X
K(·, x) dP(x). (4)

Given the embedding in (4), we can define a pseudo-metric
on M1

+(X ) as

γK(P,Q) =

∥∥∥∥∫
X
K(·, x) dP(x)−

∫
X
K(·, x) dQ(x)

∥∥∥∥
H

,

(5)
which is the distance between the embeddings of P and Q in
H. We refer to γK as the kernel distance. Note that γK is in
general not a metric. The choice of K determines whether γK
is a metric or not. Suppose K(x, y) = ⟨x, y⟩2, x, y ∈ Rd. It is
easy to check that γK is the Euclidean distance between the
means of P and Q and therefore is not a metric on M1

+(Rd).
Also note that choosing k(x, y) = exp(−

√
−1⟨x, y⟩2) in (5)

yields the L2 distance between the characteristic functions
of P and Q. Therefore, the embedding in (4) can be seen
as a generalization of the characteristic function of P. The
question of when is γK a metric on M1

+(X ) is addressed in
[8]–[11]. Examples of kernels for which γK is a metric include
exp(−σ∥x − y∥22), exp(−σ∥x − y∥1), x, y ∈ Rd, σ > 0,
etc. We would like to mention that γK is weaker than KL
divergence [8], i.e., γK(P,Q) ≤ C

√
2D(P∥Q), where P is

absolutely continuous w.r.t. Q and C := sup{
√
K(x, x) : x ∈

X}.1 This means there can be two distinct P and Q which
need not be distinguished by γK while it is distinguished by
KL divergence.

Suppose we are given random samples, S drawn i.i.d. from
P. Define Pn := 1

n

∑n
j=1 δXj , where δx represents the Dirac

measure at x ∈ X . Then, we have the following result which
will be useful to prove our main result in Theorem 3.

Theorem 2: Let ψ : X → H be a measurable H-valued
function such that supx∈X ∥ψ(x)∥H ≤ C < ∞, where X is
a measurable space and H is a separable Hilbert space. Then
with probability at least 1 − δ over the choice of {Xj}nj=1

1Since γK possibly behaves like
√
D, the approximation error rate of

O(1/k) in KL sense should probably be compared to O(k−1/2) rate in
γK sense. Similar is the case with the estimation error where the rate of
Of (n

−1/2) in KL sense should be compared to Of (n
−1/4) rate in γK

sense. From this perspective, we can say that γK provides a better estimation
error rate than the KL while maintaining the same approximation error rate.



drawn i.i.d. from P, the following holds:∥∥∥∥∫
X
ψ(x) d(Pn − P)(x)

∥∥∥∥
H

≤ 2C√
n
+

√
2C2

n
log

1

δ
.

Proof: Define

γψ(Pn,P) :=

∥∥∥∥∥∥ 1n
n∑
j=1

ψ(Xj)−
∫
X
ψ(x) dP(x)

∥∥∥∥∥∥
H

.

Suppose we replace Xj by X ′
j which is also drawn from

P. We denote the associated γψ(Pn,P) as γ
\j
ψ (Pn,P).

Then it is easy to check that |γψ(Pn,P) − γ
\j
ψ (Pn,P)| ≤

1
n

∥∥ψ(Xj)− ψ(X ′
j)
∥∥
H

≤ 2C
n . Therefore γψ(Pn,P) satisfies

the bounded difference inequality. Hence, by invoking McDi-
armid’s inequality, we have that with probability at least 1− δ
over S,

γψ(Pn,P) ≤ Eγψ(Pn,P) +
√

2C2

n
log

1

δ
.

By using the symmetrization argument [12], it can be
shown that Eγψ(Pn,P) ≤ 2E

∥∥∥ 1
n

∑n
j=1 ρjψ(Xj)

∥∥∥
H

=

2EEρ
∥∥∥ 1
n

∑n
j=1 ρjψ(Xj)

∥∥∥
H

, where (ρ)k are the
i.i.d. Rademacher random variables, i.e., Pr(ρj = 1) =

Pr(ρj = −1) = 1
2 , ∀ j, and Eρ

∥∥∥ 1
n

∑n
j=1 ρjψ(Xj)

∥∥∥
H

:=

E
[∥∥∥ 1

n

∑n
j=1 ρjψ(Xj)

∥∥∥
H
|{Xj}nj=1

]
. Now consider

Eρ

∥∥∥∥∥∥ 1n
n∑
j=1

ρjψ(Xj)

∥∥∥∥∥∥
H

=
1

n
Eρ

√√√√ n∑
i,j=1

ρiρj⟨ψ(Xi), ψ(Xj)⟩H

≤ 1

n
Eρ

√√√√ n∑
i=1

ρ2i ⟨ψ(Xi), ψ(Xi)⟩H

+
1

n
Eρ

√∑
i ̸=j

ρiρj⟨ψ(Xi), ψ(Xj)⟩H.

Clearly the first summand is bounded above by C/
√
n.

Note that by invoking Jensen’s inequality in the second
summand, we obtain Eρ

√∑
i ̸=j ρiρj⟨ψ(Xi), ψ(Xj)⟩H ≤√

Eρ
∑
i ̸=j ρiρj⟨ψ(Xi), ψ(Xj)⟩H = 0, thereby proving the

result.

III. BOUNDS FOR MIXTURE DENSITY ESTIMATION

In this section, we present our main result of establishing the
estimation and approximation errors for mixture density esti-
mation using γK as the measure of goodness of fit. We show in
Theorem 3 that an estimation error rate of Of (n−1/2)—which
is a faster rate than that obtained with KL divergence—can be
achieved with γK while the same rate of O(k−1/2) is obtained
for the approximation error (see footnote 1). However, we
would like to mention that unlike the results in [1]–[3], we
do not make any assumptions on f and C.

Define

γK(f, g) :=

∥∥∥∥∫
X
K(·, x)(f(x)− g(x)) dµ(x)

∥∥∥∥
H

,

γK(S, g) :=

∥∥∥∥∥ 1n
n∑
i=1

K(·, Xi)−
∫
K(·, x)g(x) dµ(x)

∥∥∥∥∥
H

,

and
gemp := arg min

g∈Gk

γK(S, g).

Note that gemp is an M -estimator.
Theorem 3: Let C := supx∈X

√
K(x, x), where K is a

continuous kernel on a separable topological space, X . Then
with probability at least 1 − δ over the choice of samples
{Xj}nj=1 drawn i.i.d. from f , the following holds:

γK(f, gemp)− inf
g∈G

γK(f, g) ≤ 4C√
n
+

√
8C2

n
log

2

δ
+

2C√
k
. (6)

In addition,

− 2C√
n
−
√

2C2

n
log

1

δ
≤ γK(S, gemp)− inf

g∈G
γK(f, g)

≤ 2C√
n
+

√
2C2

n
log

1

δ
+

2C√
k
. (7)

Proof: First we show that for any g ∈ G, there exists
g̃k ∈ Gk such that γK(g̃k, g) = O(k−1/2). Consider∫

X
K(·, x)g(x) dµ(x) =

∫
X
K(·, x)

∫
Θ

ϕθ(x) dP(θ) dµ(x)

(⋆)
=

∫
Θ

K̃(·,θ)︷ ︸︸ ︷∫
X
K(·, x)ϕθ(x) dµ(x) dP(θ),

where we have invoked Fubini’s theorem in (⋆). Let us draw
i.i.d. samples, {θ̃j}kj=1 from P. Define

g̃k(x) :=
1

k

k∑
j=1

ϕθ̃j (x) ∈ Gk.

Then ∫
X
K(·, x)g̃k(x) dµ(x) =

1

k

k∑
j=1

K̃(·, θ̃j).

Therefore,
γK(g̃k, g) = γK̃(Pk,P),

which from Theorem 2 (since k is a continuous kernel defined
on a separable topological space, X , by Lemma 4.33 of [13],
H is separable and therefore Theorem 2 can be invoked) means
that with probability at least 1− δ over {θ̃j}kj=1, we have

γK(g̃k, g) ≤
2C√
k
+

√
2C2

k
log

1

δ
.

By letting δ → 1, we conclude that for any g ∈ G, there exists
gk ∈ Gk such that

γK(g̃k, g) ≤
2C√
k
. (8)



Let us fix an ε > 0 and a function gε ∈ G such that

γK(f, gε) ≤ inf
g∈G

γK(f, g) + ε.

Consider

γK(f, gemp)− inf
g∈G

γK(f, g) =

A1︷ ︸︸ ︷
γK(f, gemp)− γK(S, gemp)

+

A2︷ ︸︸ ︷
γK(S, gemp)− γK(S, g̃k)

+

A3︷ ︸︸ ︷
γK(S, g̃k)− γK(f, g̃k)

+ γK(f, g̃k)− inf
g∈G

γK(f, g)

≤ A1 +A2 +A3

+

A4︷ ︸︸ ︷
γK(f, g̃k)− γK(f, gε)+ε.

Note that

A1

(∗)
≤ γK(S, f),

A2

(⋆⋆)

≤ 0,

A3

(∗)
≤ γK(S, f),

A4

(∗)
≤ γK(g̃k, gε)

(8)

≤ 2C√
k
,

where (∗) follows from the reverse triangle inequality and (⋆⋆)
follows from the fact that gemp is the minimizer of γK(S, g)
over g ∈ Gk. It follows from Theorem 2 that with probability
at least 1− δ

2 over the choice of {Xj}nj=1, we have

γK(S, f) ≤ 2C√
n
+

√
2C2

n
log

2

δ
.

Combining all the above results, we have that with probability
at least 1−δ over the choice of {Xj}nj=1, the following holds:

γK(f, gemp)− inf
g∈G

γK(f, g) ≤ 4C√
n
+

√
8C2

n
log

2

δ

+
2C√
k
+ ε. (9)

Letting ε→ 0 in (9) yields the result in (6).
Since

γK(S, gemp)− inf
g∈G

γK(f, g) ≤ A2 +A3 +A4 + ε,

the upper bound in (7) follows by taking ε→ 0. On the other
hand, since γK(f, gemp)− infg∈G γK(f, g) ≥ 0, we have

γK(S, gemp)− inf
g∈G

γK(f, g) ≥ γK(S, gemp)− γK(f, gemp)

≥ −γK(S, f)

and the lower bound in (7) follows from Theorem 2.
Although γK provides a nice result that does not make any
assumptions on f and C, one would be intrigued about what
makes γK special. In fact, can’t we use any other distance

metric on M1
+(X ) to obtain a similar result? This can be

understood by carefully noticing the proof of Theorem 3
wherein it should be clear that the terms, A1, A3 and A4

are bounded by γK(S, f)—note that γK(g̃k, gε), which is a
bound on A4 is also of the form γK(S, f) where S is drawn
from f = gε. This means, Theorem 3 hinges completely
on Theorem 2. Therefore, if we use a distance measure that
behaves similar to γK in the sense shown in Theorem 2,
we obtain similar results as obtained with γK . However, it
is not clear what distance measures other than γK exhibit this
behavior.

IV. CONCLUSION & DISCUSSION

In this work, we have studied the problem of mixture density
estimation using the notion of embedding probability measures
into a reproducing kernel Hilbert space. We showed that this
approach does not make any assumptions on the unknown
density or the base class of densities while achieving rates
that are better to those obtained using KL divergence. While
we proved results for the M -estimator, in future, we would
like to investigate the bounds for a greedy procedure similar
to the one considered in [1] and [2].
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