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bharathsv@ucsd.edu, fukumizu@ism.ac.jp, arthur.gretton@gmail.com,
bernhard.schoelkopf@tuebingen.mpg.de, gert@ece.ucsd.edu

Abstract—In this paper, we develop and analyze a non-
parametric method for estimating the class of integral probability
metrics (IPMs), examples of which include the Wasserstein dis-
tance, Dudley metric, and maximum mean discrepancy (MMD).
We show that these distances can be estimated efficiently by
solving a linear program in the case of Wasserstein distanceand
Dudley metric, while MMD is computable in a closed form. All
these estimators are shown to bestrongly consistent and their
convergence rates are analyzed. Based on these results, we show
that IPMs are simple to estimate and the estimators exhibit good
convergence behavior compared toφ-divergence estimators.

I. I NTRODUCTION

Given samples from two probability measures,P andQ, it is
often of interest (especially in inference problems in statistics)
to estimate the distance/divergence between unknownP and
Q. The commonly and popularly used distance/divergence
measure between probabilities is theAli-Silvey distance[1],
also called theCsisźar’s φ-divergence[2], which is defined as

Dφ(P,Q) :=

{ ∫
M φ

(
dP
dQ

)
dQ, P ≪ Q

+∞, otherwise
,

whereM is a measurable space andφ : [0,∞) → (−∞,∞]
is a convex function.P ≪ Q denotes thatP is absolutely
continuous w.r.t.Q. Well-known distance/divergence measures
obtained by appropriately choosingφ include the Kullback-
Liebler (KL) divergence (φ(t) = t log t), Hellinger distance
(φ(t) = (

√
t−1)2), and total variation distance (φ(t) = |t−1|).

The non-parametric estimation ofφ-divergence, especially the
KL-divergence has recently been studied in depth [3]–[5].

The goal of this paper is to study the non-parametric
estimation of another popular family (particularly in proba-
bility theory and mathematical statistics) of distance measures
on probabilities, theintegral probability metrics(IPM) [6],
defined as

γF(P,Q) := sup
f∈F

∣∣∣∣
∫

M

f dP−
∫

M

f dQ

∣∣∣∣ , (1)

whereF in (1) is a class of real-valued bounded measurable
functions onM . Mostly, IPMs have been studied as tools of

theoretical interest in probability theory [7, Chapter 11], with
applications in mass transportation problems [8], empirical
process theory [9], etc. By appropriately choosingF, various
popular distance measures can be obtained:

(a) Dudley metric:ChooseF = {f : ‖f‖BL ≤ 1} in (1),
where‖f‖BL := ‖f‖∞ + ‖f‖L, ‖f‖∞ := sup{|f(x)| :
x ∈ M} and ‖f‖L := sup{|f(x) − f(y)|/ρ(x, y) :
x 6= y in M}. ‖f‖L is called the Lipschitz semi-norm
of a real-valued functionf on a metric space,(M,ρ).
The Dudley metric is popularly used in proving the
convergence of probability measures with respect to the
weak topology [7, Chapter 11].

(b) Kantorovich metric and Wasserstein distance:Choosing
F = {f : ‖f‖L ≤ 1} in (1) yields theKantorovich
metric. The famous Kantorovich-Rubinstein theorem [7,
Theorem 11.8.2] shows that whenM is separable, the
Kantorovich metric is the dual representation ofWasser-
stein distance[7, p. 420]. Due to this duality, in this paper,
we refer to the Kantorovich metric as the Wasserstein
distance. The Wasserstein distance has found application
in information theory [10], mathematical statistics [11],
and mass transportation problems [8].

(c) Total variation metric and Kolmogorov distance:γF is
the total variation metricwhen F = {f : ‖f‖∞ ≤ 1}
while it is theKolmogorov distancewhenF = {1(−∞,t] :
t ∈ Rd}. The Kolmogorov distance is popularly used
in proving the classical central limit theorem inRd,
and also appears as the Kolmogorov-Smirnov statistic in
hypothesis testing [12].

(d) Maximum mean discrepancy:γF is called themaximum
mean discrepancy (MMD)[13] whenF = {f : ‖f‖H ≤
1}. Here, H represents a reproducing kernel Hilbert
space (RKHS) [14] withk as its reproducing kernel
(r.k.). MMD is used in statistical applications including
homogeneity testing [13], independence testing [15], and
testing for conditional independence [16].

Having briefly mentioned different IPMs and their applica-
tions, we now consider the problem of non-parametrically esti-



matingγF(P,Q), whereP andQ are known only through ran-
dom samples drawn from them. Our focus is non-parametric
estimation as we do not want to impose any strong assump-
tions on P and Q. The key properties that any estimator
should satisfy are (a)consistency(resp.strong consistency),
i.e., suppose{θl} is a sequence of estimators ofθ, then
θl is consistent (resp. strongly consistent) ifθl converges
in probability (resp. a.s.) to θ as l → ∞, (b) fast rate of
convergence and (c) a simple implementation.

Before presenting our results on the estimation of IPMs,
we will briefly discuss prior work on the estimation ofφ-
divergences, which we hope will help the reader to appre-
ciate the advantages involved in the estimation of IPMs.
As mentioned earlier, the non-parametric estimation ofφ-
divergences, especially the KL-divergence, is well studied (see
[3]–[5] and references therein). Wanget al. [3] propose a
simple histogram-based KL estimator, using a data-dependent
space partitioning scheme, and show that the non-parametric
estimator of KL-divergence is strongly consistent. However,
the rate of convergence of this estimator can be arbitrarily
slow, depending on the distributions. In addition, for increasing
dimensionality of the data (inRd), the method is inefficient
both in statistical and computational terms. Nguyenet al.
[5] provide a consistent estimator of the KL-divergence by
solving a convex program (specifically, a quadratic program
[17, Chapter 4]). Although this approach is efficient and the
dimensionality of data is not an issue, the rate of convergence
of this estimator can also be arbitrarily slow, depending onthe
distributions. One should therefore bear in mind the difficulty
in empirically estimatingφ-divergences, as compared with our
estimates of integral probability metrics.

In Section II, we consider the non-parametric estimation
of IPMs, in particular the Wasserstein distance (W ), Dudley
metric (β) and MMD (γk). The estimates ofW and β are
obtained by solving linear programs,while an estimator ofγk is
computed in closed form, which means that these distances are
computationally simpler to estimate than the KL-divergence
(the KL-divergence estimator due to [5] solves a quadratic
program). In addition, an increase in the dimensionality of
data has only a mild effect on the complexity of estimating
these metrics, unlike in the case of KL-divergence, where
space partitioning schemes [3] become increasingly difficult to
implement as the number of dimensions grows. Next, in Sec-
tion III, we show that these estimators are strongly consistent,
and provide their rates of convergence, using concentration
inequalities and tools from empirical process theory [9]. Based
on these results, it will be clear that all these estimators ex-
hibit good convergence behavior compared to KL-divergence
estimators, as the latter can have an arbitrarily slow rate of
convergence depending on the probability distributions [3],
[5]. Our experimental results in [18] confirm the convergence
theory discussed in Section III and therefore demonstrate the
practical viability of these estimators.

Since the total variation distance is also an IPM, in Sec-
tion IV, we briefly discuss its empirical estimation and show
that the empirical estimator is not strongly consistent. Because

of this, we provide new lower bounds for the total variation
distance in terms ofW , β andγk, which can be consistently
estimated. These bounds also translate as lower bounds on the
KL-divergence through Pinsker’s inequality [19].

Due to space limitations, complete proofs of the results are
not provided. We refer the reader to [18] for complete proofs
and additional results, including experimental results.

II. N ON-PARAMETRIC ESTIMATION OF WASSERSTEIN

DISTANCE, DUDLEY METRIC AND MMD

In this section, we show that the Wasserstein and Dudley
metrics can be estimated by solving linear programs (see
Theorems 1 and 2) whereas an estimator for MMD can be
obtained in closed form (Theorem 3; proved in [13]).

Given{X(1)
1 , X

(1)
2 , . . . , X

(1)
m } and{X(2)

1 , X
(2)
2 , . . . , X

(2)
n },

which are i.i.d. samples drawn randomly fromP and Q

respectively, we propose to estimateγF(P,Q) by the following
estimator,

γF(Pm,Qn) = sup
f∈F

∣∣∣∣∣

N∑

i=1

Ỹif(Xi)

∣∣∣∣∣ , (2)

where Pm := 1
m

∑m
i=1 δX(1)

i

and Qn := 1
n

∑n
i=1 δX(2)

i

represent the empirical distributions ofP andQ respectively,
N = m + n, Ỹi = 1

m when Xi = X
(1)
i for i = 1, . . . ,m

and Ỹm+i = − 1
n when Xm+i = X

(2)
i for i = 1, . . . , n.

Here,δx represents the Dirac measure atx. The computation
of γF(Pm,Qn) in (2) is not straightforward for any arbitrary
F. To obtain meaningful results, in the following, we restrict
ourselves toFW := {f : ‖f‖L ≤ 1}, Fβ := {f : ‖f‖BL ≤ 1}
andFk := {f : ‖f‖H ≤ 1} and compute (2). Let us denote
W := γFW

, β := γFβ
andγk := γFk

.

Theorem 1 (Estimator of Wasserstein distance):For all
α ∈ [0, 1], the following function solves (2) forF = FW :

fα(x) := α min
i=1,...,N

(a⋆i + ρ(x,Xi))

+(1− α) max
i=1,...,N

(a⋆i − ρ(x,Xi)),

where

W (Pm,Qn) =

N∑

i=1

Ỹia
⋆
i , (3)

and{a⋆i }Ni=1 solve the following linear program,

max
a1,...,aN

N∑

i=1

Ỹiai

s.t. −ρ(Xi, Xj) ≤ ai − aj ≤ ρ(Xi, Xj), ∀ i, j.
Theorem 2 (Estimator of Dudley metric):For all α ∈

[0, 1], the following function solves (2) forF = Fβ:

gα(x) := max

(
− max

i=1,...,N
|a⋆i |,min

(
hα(x), max

i=1,...,N
|a⋆i |

))

where

hα(x) := α min
i=1,...,N

(a⋆i + L⋆ρ(x,Xi))

+(1− α) max
i=1,...,N

(a⋆i − L⋆ρ(x,Xi)),



L⋆ = max
Xi 6=Xj

|a⋆i − a⋆j |
ρ(Xi, Xj)

,

β(Pm,Qn) =

N∑

i=1

Ỹia
⋆
i , (4)

and{a⋆i }Ni=1 solve the following linear program,

max
a1,...,aN ,b,c

N∑

i=1

Ỹiai

s.t. −b ρ(Xi, Xj) ≤ ai − aj ≤ b ρ(Xi, Xj), ∀ i, j
−c ≤ ai ≤ c, ∀ i
b+ c ≤ 1.

Theorem 3 (Estimator of MMD [13]):For F = Fk, the
following function is the unique solution to (2):

f =
1

‖∑N
i=1 Ỹik(·, Xi)‖H

N∑

i=1

Ỹik(·, Xi),

and

γk(Pm,Qn) =

√√√√
N∑

i,j=1

ỸiỸjk(Xi, Xj). (5)

The following observations can be made about the estimators
in Theorems 1–3.
(a) SinceW andβ are estimated by solving a linear program

andγk is obtained in closed form, it is easy to see that
these estimators have a computational advantage over
KL-divergence estimators in [5].

(b) Note that the estimators in (3) and (4) depend on{Xi}Ni=1

only throughρ, while the one in (5) depends on{Xi}Ni=1

only throughk. This means, once{ρ(Xi, Xj)}Ni,j=1 or
{k(Xi, Xj)}Ni,j=1 is known, the complexity of the corre-
sponding estimators is independent ofd (whenM = Rd),
unlike in the estimation of KL-divergence [3].

(c) Because these estimators depend onM only throughρ
or k, the domainM is immaterial as long asρ or k
is defined onM . Therefore, these estimators extend to
arbitrary domains, unlike the KL-divergence, where the
domain is usually chosen to beRd [3].

(d) Unlike with the KL-divergence, the estimators ofW , β
andγk account for the properties of the underlying space
M . This is useful whenP andQ have disjoint support.
WhenP andQ have disjoint support,Dφ(P,Q) = +∞
irrespective ofM , while W , β and γk vary with the
properties ofM . Therefore, in such cases, these IPMs
provides a better notion of distance betweenP and Q,
compared toφ-divergences.

III. C ONSISTENCY AND RATE OF CONVERGENCE

In Section II, we presented empirical estimators ofW, β
andγk. For these estimators to be reliable, we need them to
converge to the population values asm,n → ∞. Even if this
holds, we would like to have a fast rate of convergence so
that in practice, fewer samples are sufficient to obtain reliable
estimates. We address these issues in this section.

Before we present our results, we briefly introduce some
terminology and notation from empirical process theory.
For any r ≥ 1 and probability measureQ, define the
Lr norm ‖f‖Q,r := (

∫
|f |r dQ)1/r and let Lr(Q) de-

note the metric space induced by this norm. Thecovering
number N (ε,F, Lr(Q)) is the minimal number ofLr(Q)
balls of radiusε needed to coverF. H(ε,F, Lr(Q)) :=
logN (ε,F, Lr(Q)) is called the entropy of F using the
Lr(Q) metric. Define the minimal envelope function:F (x) :=
supf∈F

|f(x)|.
We now present a general result on the strong consistency

of γF(Pm,Qn), using which we prove the consistency of
W (Pm,Qn) andβ(Pm,Qn) in Corollary 5.

Theorem 4:Suppose the following conditions hold:

(i)
∫
F dP < ∞.

(ii)
∫
F dQ < ∞.

(iii) ∀ε > 0, 1
mH(ε,F, L1(Pm))

P−→ 0 asm → ∞.

(iv) ∀ε > 0, 1
nH(ε,F, L1(Qn))

Q−→ 0 asn → ∞.

Then,|γF(Pm,Qn)− γF(P,Q)| a.s.−→ 0 asm,n → ∞.

The following corollary to Theorem 4 shows thatW (Pm,Qn)
andβ(Pm,Qn) are strongly consistent.

Corollary 5 (Consistency ofW andβ): Let (M,ρ) be a
totally bounded metric space. Then, asm,n → ∞,

(i) |W (Pm,Qn)−W (P,Q)| a.s.−→ 0.
(ii) |β(Pm,Qn)− β(P,Q)| a.s.−→ 0.

Proof: The proof idea is to check the conditions(i)–(iv)
in Theorem 4. SinceM is a totally bounded metric space, it
can be shown that∀x ∈ M, F (x) < ∞ for F = FW and
F = Fβ, which therefore satisfies(i) and(ii) in Theorem 4. It
can be shown thatH(ε,F, L1(Pm)) andH(ε,F, L1(Qn)) are
independent ofm andn for F = FW andF = Fβ , therefore
satisfying(iii) and(iv) in Theorem 4. For details, refer to [18,
Corollary 9].

Similar to Corollary 5, a strong consistency result forγk can
be provided by estimating the entropy number ofFk. However,
in the following, we adopt a different and simpler approach.
To this end, we first provide a general result on the rate of
convergence ofγF(Pm,Qn), expanding on the proof strategy
in [20, Appendix A.2]. As a special case, obtain the rates of
convergence of the estimators ofW , β and γk. Using this
result, we recover the strong consistency ofγk obtained in
[13, Theorem 4]. We start with the following definition.

Definition 6 (Rademacher complexity):Let F be a class of
functions onM and {σi}mi=1 be independent Rademacher
random variables, i.e., Pr(σi = +1) = Pr(σi = −1) = 1

2 . The
Rademacher process is defined as{ 1

m

∑m
i=1 σif(xi) : f ∈ F}

for some{xi}mi=1 ⊂ M . The Rademacher complexity overF
is defined as

Rm(F; {xi}mi=1) := E sup
f∈F

∣∣∣∣∣
1

m

m∑

i=1

σif(xi)

∣∣∣∣∣ .

We now present a general result that provides a probabilistic
bound on the deviation ofγF(Pm,Qn) from γF(P,Q).



Theorem 7:For anyF such thatν := supx∈M F (x) < ∞,
with probability at least1− δ, the following holds:

|γF(Pm,Qn)− γF(P,Q)| ≤
√
18ν2 log

4

δ

(
1√
m

+
1√
n

)

+2Rm(F; {X(1)
i }) + 2Rn(F; {X(2)

i }). (6)

Theorem 7 holds for anyF for which ν is finite. However, to
obtain the rate of convergence forγF(Pm,Qn), one requires
an estimate ofRm(F; {X(1)

i }mi=1) and Rn(F; {X(2)
i }ni=1).

Note that if Rm(F; {X(1)
i }mi=1)

P−→ 0 as m → ∞ and

Rn(F; {X(2)
i }ni=1)

Q−→ 0 as n → ∞, then |γF(Pm,Qn) −
γF(P,Q)| P,Q−→ 0 as m,n → ∞. Also note that if
Rm(F; {X(1)

i }mi=1) = OP(rm) and Rn(F; {X(2)
i }ni=1) =

OQ(rn), then from (6),|γF(Pm,Qn)−γF(P,Q)| = OP,Q(rm∨
m−1/2+rn∨n−1/2), wherea∨ b := max(a, b). The following
corollary to Theorem 7 provides the rate of convergence for
W , β andγk.

Corollary 8 (Rates of convergence forW , β and γk):
(i) Let M be a bounded subset of(Rd, ‖ · ‖s) for some
1 ≤ s ≤ ∞. Then,|W (Pm,Qn)−W (P,Q)| = OP,Q(rm+rn)
and |β(Pm,Qn)− β(P,Q)| = OP,Q(rm + rn), where

rm =

{
m−1/2 logm, d = 1

m−1/(d+1), d ≥ 2
.

In addition if M is a bounded, convex subset of(Rd, ‖ · ‖s)
with non-empty interior, then

rm =





m−1/2, d = 1

m−1/2 logm, d = 2
m−1/d, d > 2

.

(ii) [13, Theorem 4]: LetM be a measurable space. Suppose
k is measurable andsupx∈M k(x, x) ≤ C < ∞. Then,
|γk(Pm,Qn)−γk(P,Q)| = OP,Q(m

−1/2+n−1/2). In addition,
|γk(Pm,Qn) − γk(P,Q)| a.s.−→ 0 as m,n → ∞, i.e., the
estimator of MMD is strongly consistent.

Proof: The proof involves the estimation of
Rm(F; {X(1)

i }) and Rn(F; {X(2)
i }) for F = FW , Fβ

and Fk, which is then used in (6). For details, see [18,
Corollary 12].

Several observations follow Corollary 8:

(a) The rate of convergence ofW and β is dependent on
the dimension,d, which means that in large dimensions,
more samples are needed to obtain useful estimates of
W andβ. Also note that the rates are independent of the
metric,‖ · ‖s, 1 ≤ s ≤ ∞.

(b) WhenM is a bounded, convex subset of(Rd, ‖ · ‖s),
faster rates are obtained than for the case whereM is
just a bounded (but not convex) subset of(Rd, ‖ · ‖s).

(c) In the case of MMD, we have not made any assumptions
on M except that it be a measurable space. This means
in the case ofRd, the rate is independent ofd, which is
a very useful property. The condition of the kernel being
bounded is satisfied by numerous kernels, including the

Gaussian kernel,k(x, y) = exp(−σ‖x − y‖22), σ > 0,
Laplacian kernel,k(x, y) = exp(−σ‖x − y‖1), σ > 0,
inverse multiquadrics,k(x, y) = (c2 + ‖x− y‖22)−t, c >
0, t > d/2, etc. onRd. See Wendland [21] for more
examples.

The results derived in this section show that the estimators
of the Wasserstein distance, Dudley metric and MMD exhibit
good convergence behavior, irrespective of the distributions,
unlike estimators of theφ-divergence [3], [5].

IV. N ON-PARAMETRIC ESTIMATION OF TOTAL VARIATION

DISTANCE

So far, the results in Sections II and III show that the
estimators of IPMs (specifically,W , β and γk) exhibit nice
properties compared to those ofφ-divergences. As shown in
Section I, since the total variation distance,

TV (P,Q) := sup

{∫

M

f d(P−Q) : ‖f‖∞ ≤ 1

}
,

is both an IPM and aφ-divergence, we consider here its
empirical estimation and investigate consistency. Suppose M
is a metric space. LetTV (Pm,Qn) be an empirical estimator
of TV (P,Q), which can be shown to be

TV (Pm,Qn) =
N∑

i=1

Ỹia
⋆
i ,

where{a⋆i }Ni=1 solve the linear program:

max
a1,...,aN

N∑

i=1

Ỹiai

s.t. −1 ≤ ai ≤ 1, ∀ i.
The question is whether this estimator is consistent. Firstnote
that a⋆i = sign(Ỹi) and therefore,TV (Pm,Qn) = 2 for any
m,n. This means for anyP,Q such thatTV (P,Q) < 2,
TV (Pm,Qn) is not a consistent estimator ofTV (P,Q).
Indeeda⋆i , ∀ i are indepedent of the actual samples,{Xi}Ni=1

drawn fromP andQ, unlike in the estimation of the Wasser-
stein and Dudley metrics, and therefore it is not surprisingthat
TV (Pm,Qn) is not a consistent estimator ofTV (P,Q).

SupposeM = Rd and letP, Q be absolutely continuous
w.r.t. the Lebesgue measure. ThenTV (P,Q) can be consis-
tently estimated in a strong sense using the total variation
distance between the kernel density estimators ofP and Q.
This is because if̃Pm and Q̃n represent the kernel den-
sity estimators associated withP and Q respectively, then
|TV (P̃m, Q̃n)−TV (P,Q)| ≤ TV (P̃m,P)+TV (Q̃n, Q)

a.s.−→
0 asm,n → ∞ (see [22, Chapter 6] and references therein).

The issue in the estimation ofTV (P,Q) is that the set
FTV := {f : ‖f‖∞ ≤ 1} is too large to obtain meaningful re-
sults if no assumptions on distributions are made. On the other
hand, one can choose a more manageable subsetF of FTV

such thatγF(P,Q) ≤ TV (P,Q), ∀P,Q and γF(Pm,Qn) is
a consistent estimator ofγF(P,Q). Possible choices forF
includeFβ and {1(−∞,t] : t ∈ Rd}, where the former yields
the Dudley metric while the latter results in the Kolmogorov



distance. The empirical estimator of the Dudley metric and
its consistency have been presented in Sections II and III. The
empirical estimator of the Kolmogorov distance betweenP and
Q is well studied and is strongly consistent, which simply
follows from the Glivenko-Cantelli theorem [23, Theorem
12.4].

Since the total variation distance betweenP andQ cannot
be estimated consistently for allP,Q, in the following, we
present two lower bounds onTV , one involvingW andβ and
the other involvingγk, which can be estimated consistently.

Theorem 9 (Lower bounds onTV ): (i) For all P 6= Q,
we have

TV (P,Q) ≥ W (P,Q)β(P,Q)

W (P,Q)− β(P,Q)
. (7)

(ii) SupposeC := supx∈M k(x, x) < ∞. Then

TV (P,Q) ≥ γk(P,Q)√
C

. (8)

Based on the above result, the following observations can be
made:

(a) A simple lower bound onTV can be obtained as
TV (P,Q) ≥ β(P,Q), ∀P,Q. It is easy to see that the
bound in (7) is tighter asW (P,Q)β(P,Q)

W (P,Q)−β(P,Q) ≥ β(P,Q) with
equality if and only ifP = Q.

(b) The bounds in (7) and (8) translate as lower bounds
on the KL-divergence through Pinsker’s inequality:
TV 2(P,Q) ≤ 2KL(P,Q), ∀P,Q. See Fedotovet al.
[19] and references therein for more refined bounds
relatingTV andKL. Therefore, using these bounds, one
can obtain a consistent estimate of a lower bound onTV
andKL.

V. CONCLUSION & D ISCUSSION

In this work, we have studied the non-parametric estimation
of integral probability metrics and showed that the empirical
estimators of the Wasserstein distance (W ), Dudley metric (β)
and maximum mean discrepancy (γk) are simple to compute,
strongly consistent and have a good convergence behavior,
compared to those ofφ-divergences. In addition, we provided
two lower bounds on the total variation distance in terms
of these IPMs, which then translate to lower bounds on
KL-divergence through Pinsker’s inequality. Our experimental
results [18] demonstrate the practical viability of these esti-
mators, which are not reported here due to space limitations.

One interesting problem yet to be explored in connection
with this work is: What is the minimax rate for estimatingW ,
β andγk, and do the proposed estimators achieve this rate?
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