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Abstract—In this paper, we develop and analyze a non- theoretical interest in probability theory [7, Chapter ,1dijth

parametric method for estimating the class of integral prokability
metrics (IPMs), examples of which include the Wassersteinis-
tance, Dudley metric, and maximum mean discrepancy (MMD).
We show that these distances can be estimated efficiently b
solving a linear program in the case of Wasserstein distancand
Dudley metric, while MMD is computable in a closed form. All
these estimators are shown to bestrongly consistent and their
convergence rates are analyzed. Based on these results, vaes
that IPMs are simple to estimate and the estimators exhibit god
convergence behavior compared tap-divergence estimators.

I. INTRODUCTION

Given samples from two probability measur@andQ, it is
often of interest (especially in inference problems inistias)
to estimate the distance/divergence between unkriBvamd

applications in mass transportation problems [8], emairic
process theory [9], etc. By appropriately choosihgvarious
ypopular distance measures can be obtained:

(a) Dudley metric:ChooseF = {f : || fllzz < 1} in (1),

(b)

Q. The commonly and popularly used distance/divergence

measure between probabilities is tAé-Silvey distancg1],
also called theCsisar's ¢-divergencd?], which is defined as
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Dy(P,Q) := {

where M is a measurable space and [0, 00) — (—o0, ]
is a convex functionP < Q denotes that? is absolutely

continuous w.r.tQ. Well-known distance/divergence measure

obtained by appropriately choosinginclude the Kullback-
Liebler (KL) divergence §(t) = tlogt), Hellinger distance
(6(t) = (v/t—1)?), and total variation distance(t) = |t—1|).

The non-parametric estimation gfdivergence, especially the

KL-divergence has recently been studied in depth [3]-[5].

The goal of this paper is to study the non-parametri

estimation of another popular family (particularly in pesb
bility theory and mathematical statistics) of distance sueas
on probabilities, theintegral probability metrics(IPM) [6],
defined as

75 (P,Q) := sup ; 1)

feF

fdP—/MfdQ

M

Q

©)

where | f[|L = |[flloo + Ilfllz, [|flloc := sup{[f(2)| :

z € M} and [|f]z := sup{|f(z) = f(y)|/p(z,y) :
x # yin M}. || f|l is called the Lipschitz semi-norm

of a real-valued functiorf on a metric space(M, p).
The Dudley metric is popularly used in proving the
convergence of probability measures with respect to the
weak topology [7, Chapter 11].

Kantorovich metric and Wasserstein distan€hoosing
F={f:|Ifllc < 1} in (1) yields the Kantorovich
metric. The famous Kantorovich-Rubinstein theorem [7,
Theorem 11.8.2] shows that wheWl is separable, the
Kantorovich metric is the dual representationvdasser-
stein distanc¢7, p. 420]. Due to this duality, in this paper,
we refer to the Kantorovich metric as the Wasserstein
distance. The Wasserstein distance has found application
in information theory [10], mathematical statistics [11],
and mass transportation problems [8].

Total variation metric and Kolmogorov distancey is

the total variation metricwhenJ = {f : || fllec < 1}
while it is theKolmogorov distancevhend = {1 (_ 4 :

t € R9}. The Kolmogorov distance is popularly used
in proving the classical central limit theorem iR?,
and also appears as the Kolmogorov-Smirnov statistic in
hypothesis testing [12].

Maximum mean discrepancyir is called themaximum
mean discrepancy (MMD[L3] whenJ = {f : || f]ls <

1}. Here, H represents a reproducing kernel Hilbert
space (RKHS) [14] withk as its reproducing kernel
(r.k.). MMD is used in statistical applications including
homogeneity testing [13], independence testing [15], and
testing for conditional independence [16].

whereJ in (1) is a class of real-valued bounded measurableHaving briefly mentioned different IPMs and their applica-
functions onM. Mostly, IPMs have been studied as tools ofions, we now consider the problem of non-parametricaliiy es



matingvys (P, Q), whereP andQ are known only through ran- of this, we provide new lower bounds for the total variation
dom samples drawn from them. Our focus is non-parametdistance in terms off/, 8 and~;, which can be consistently
estimation as we do not want to impose any strong assungstimated. These bounds also translate as lower boundgon th
tions onP and Q. The key properties that any estimatoKL-divergence through Pinsker’s inequality [19].

should satisfy are (agonsistency(resp.strong consistengy Due to space limitations, complete proofs of the results are
i.e., suppose{f;} is a sequence of estimators 6f then not provided. We refer the reader to [18] for complete proofs
6, is consistent resp. strongly consistent) if§; converges and additional results, including experimental results.

in probability fesp.a.s.) tof as! — oo, (b) fast rate of I
convergence and (c) a simple implementation.

Before presenting our results on the estimation of IPMs, ) ] )
we will briefly discuss prior work on the estimation @t In this section, we show that the Wasserstein and Dudley

divergences, which we hope will help the reader to apprgletrics can be estimated by soIving linear programs (see
ciate the advantages involved in the estimation of IPmdheorems 1 and 2) whereas an estimator for MMD can be
As mentioned earlier, the non-parametric estimationgef °Ptained mgl)osedl form (T(q()eorem 3 p2r)oved2 In [13])-(2)
divergences, especially the KL-divergence, is well stddsze C_5|ven {X1 5Xg e Xm pand{X;™, X7, X,
[3]-[5] and references therein). Wareg al. [3] propose a which are i.i.d. samples drawn randomly frokh and Q

simple histogram-based KL estimator, using a data-dependeSPectively, we propose to estimate(lP, Q) by the following
space partitioning scheme, and show that the non-parameg$timator,

. NON-PARAMETRIC ESTIMATION OF WASSERSTEIN
DISTANCE, DUDLEY METRIC AND MMD

estimator of KL-divergence is strongly consistent. Howgve N

the rate of convergence of this estimator can be arbitrarily Yo (P, Qu) = sup | > Vi f(X5)], 2
slow, depending on the distributions. In addition, for ewsing 17 iz

dimensionality of the data (ifik?), the method is inefficient where P,, = L3 6 o and Q, = 137" 6 ¢
both in statistical and computational terms. Nguyemnal. represent the empirical distributions Bfand Q respectively,
[5] provide a consistent estimator of the KL-divergence by —  + 5, V; = L when X; = Xi(l) fori=1,....m
solving a convex program (specifically, a quadratic progragy,q gmﬂ_ _ _% wﬁen Xppii = XZ_(2) fori = 1,....n.

[17, Chapter 4]). Although this approach is efficient and th@ere 5 represents the Dirac measuresatThe computation

dime_nsiorjality of data is not an i_ssu_e, the rate of convergeny: . p Q,) in (2) is not straightforward for any arbitrary
of this estimator can also be arbitrarily slow, dependindf® 4 T4 optain meaningful results, in the following, we restric
distributions. One should therefore bear in mind the difficu ) ;selves = {f: | fllL <10 Fs:={f: | flp <1}

in empirically estimating)-divergences, as compared with oug 4 F. == {f : | fllsc <1} and compute (2). Let us denote
estimates of integral probability metrics. W =g, B =5 a_nd'yk = g
= YT B = Y5, =Yg,

In Section Il, we consider the non-parametric estimation Theorem 1 (Estimator of Wasserstein distand®r  all
of IPMs, in particular the Wasserstein distan Dudle . .
P ¢EX Y € [0,1], the following function solves (2) foff = Fyy:

metric (3) and MMD (y;). The estimates of¥/ and 3 are
obtained by solving linear programs,while an estimatoy;ois folz) = «a min (af + p(z, X;))
computed in closed form, which means that these distanees ar =N
computationally simpler to estimate than the KL-divergenc

(the KL-divergence estimator due to [5] solves a quadra\i,?here
program). In addition, an increase in the dimensionality o N

data has only a mild effect on the complexity of estimating W (P, Qpn) = ZYia’;, 3)
these metrics, unlike in the case of KL-divergence, where i=1

space partitioning schemes [3] become increasingly diffiou gng {ar}N | solve the following linear program,
implement as the number of dimensions grows. Next, in Sec-

+(1 - Oé) ._qlaXN(a: - p(Ia X’L))a

FRRRE}

N
tion Ill, we show that these estimators are strongly coesist max Z Vo
and provide their rates of convergence, using concentratio  ai,....an ~ o
inequalities and tools from empirical process theory [$s&d st —p(Xi, X;) < ai —a; < p(Xs, X;), Vi,
L 19 J — (2 gy — (3 2/ 2

on these results, it will be clear that all these estimatars e
hibit good convergence behavior compared to KL-divergenceTheorem 2 (Estimator of Dudley metrickor all o €
estimators, as the latter can have an arbitrarily slow réte [§: 1] the following function solves (2) fof = Fs:
convergence depending on the probability distributionf [3 o .
[5]. Our experimental results in [18] confirm the converg@ncga(“’) ‘= max <_ e |a7], min <ha(“7)v [Jpax |aj |)>
theory discussed in Section Il and therefore demonsttete t
. e . where

practical viability of these estimators.

Since the total variation distance is also an IPM, in Sec-  hq(z) :=« min (a] + L*p(z, X;))
tion 1V, we briefly discuss its empirical estimation and show LoV
that the empirical estimator is not strongly consistentd&ese i=1

=1,...,



jat - a3

I* — max J Before we present our results, we briefly introduce some
XiAX; p(Xi, X))’ terminology and notation from empirical process theory.
N For any » > 1 and probability measurd), define the
B(Pm.Qn) = 3 Vial, @) Ly nom ||fllg, = (f|fI"dQ)"" and let L(Q) de-
i=1 note the metric space induced by this norm. Tdwvering

number N (e, ¥, L,.(Q)) is the minimal number ofL,.(Q)
balls of radiuse needed to cove. H(e,F, L.(Q)) :=

N log N (e,F, L. (Q)) is called theentropy of F using the
e ZYiai L.(Q) metric. Define the minimal envelope functiofi(z) :=

st —bp(X;, X;) < a; —a; < bp(X;, X;), Vi, j sup reg | f ()] _
N PRtiRg) = i a5 = 0P36 A4), T ] We now present a general result on the strong consistency

and {a*}} , solve the following linear program,

—c<a; <¢ Vi of y5(P.,,Q,), using which we prove the consistency of
b+c<1. W (P, Q) and 3(P,,, Q) in Corollary 5.
Theorem 3 (Estimator of MMD [13])For F = 7, the .Theorem 4:Suppose the following conditions hold:
following function is the unique solution to (2): (i) [FdP < oo.
N (i) [FdQ < oo.
— e Vik(-, Xo), (i) Ve >0, LH(e,F, L1 (Pp)) — 0 asm — oo.
i=1 1 A i=1 iv) Ve >0, =H(e,F, L1(Q,)) — 0 asn — oo.
1> iy Yik(-, Xo)llac (iv) V. 7117_[( F,L1(Qn)) Q
and ~ Then,|v5 (P, Q) — 75 (P, Q)| £ 0 asm,n — oo.
_ Y v, The following corollary to Theorem 4 shows that(P,,,, Q,,)
]P)ma n) — }/ZY k XZa X . 5 . ’
(B Q) sz_:l ik i) ®) and 3(P,,,Q,) are strongly consistent.

The following observations can be made about the estimatorscoronary 5 (Consistency of” and §): Let (M,p) be a

in Theorems 1-3. to.tally bounded metric spacel.l 'Sl'hen,msn — 00,

(@) Sincel/ andg are estimated by solving a linear program(_') (W (Prn, Qn) = W(P, @)a',f 0.
and~; is obtained in closed form, it is easy to see thatil) [3(Fm,Qn) — 5, Q) == 0.
these estimators have a computational advantage over Proof: The proof idea is to check the conditiofi¥—(iv)
KL-divergence estimators in [5]. in Theorem 4. Sincé// is a totally bounded metric space, it

(b) Note that the estimators in (3) and (4) depend &n}Y ; can be shown thatz € M, F(z) < oo for ¥ = Fy and
only throughp, while the one in (5) depends diX;}Y., = 4, which therefore satisfie§) and(ii) in Theorem 4. It
only throughk. This means, oncép(Xi,Xj)}f\_’fj:1 or can be shown thaki(e,F, L1 (P,,)) andH (e, F, L1(Q,)) are
{k(Xi, X;)}Y,—, is known, the complexity of the corre-independent ofn andn for ¥ = Fy, andF = F5, therefore
sponding estimators is independentidivhen)M = R?),  satisfying(iii) and(iv) in Theorem 4. For details, refer to [18,
unlike in the estimation of KL-divergence [3]. Corollary 9]. [ ]

(c) Because these estimators dependidronly throughp  similar to Corollary 5, a strong consistency result frcan
or k, the domainM is immaterial as long ag or k& pe provided by estimating the entropy numbefgf However,
is defined onM. Therefore, these estimators extend i the following, we adopt a different and simpler approach.
arbitrary domains, unlike the KL-divergence, where thgy this end, we first provide a general result on the rate of
domain is usually chosen to t®# [3]. convergence of5(P,,,Q,,), expanding on the proof strategy
(d) Unlike with the KL-divergence, the estimators bf, 5 iy [20, Appendix A.2]. As a special case, obtain the rates of
and-y, account for the properties of the underlying spacgnvergence of the estimators f, 3 and ~;. Using this
M. This is useful wher? and Q have disjoint support. resylt, we recover the strong consistency-gf obtained in
WhenP and Q have disjoint supportDy(P,Q) = +00  [13, Theorem 4]. We start with the following definition.

irrespective ofM, while W, 5 and v, vary with the Definition 6 (Rademacher complexity)et I be a class of

p:gssjrssesaoggté:zgigﬁrg% '(;Sf:ﬁ?engﬁé@t;ensdedplwisunctions onM and {o;}*, be independent Rademacher
P ' random variables, i.e., Rr; = +1) = Pr(o; = —1) = 1. The

_di =32
compared toj-divergences. Rademacher process is definedds>""" | o; f(z;) : f € F}

I1l. CONSISTENCY AND RATE OF CONVERGENCE for some{x;}", C M. The Rademacher complexity ovér
In Section I, we presented empirical estimatorsigf 3 1S defined as
and~;. For these estimators to be reliable, we need them to 1
converge to the population values msn — oo. Even if this Ry (F;{z;}i21) == Esup m Zo’if(ﬂfi) .
holds, we would like to have a fast rate of convergence so &7 i=1
that in practice, fewer samples are sufficient to obtairabéé We now present a general result that provides a probabilisti
estimates. We address these issues in this section. bound on the deviation ofs(P,,, Q,) from v5(P, Q).




Theorem 7:For anyJ such thatv := sup,¢,; F(z) < oo, Gaussian kernelk(x,y) = exp(—ollz — y||3), o > 0,

with probability at leastl — ¢, the following holds: Laplacian kernelk(z,y) = exp(—ollz — y||1), ¢ > 0,
inverse multiquadricsk(x, y) = (c® + |lz — y[|3) 7%, ¢ >
Iy (P, Q) — v7(P, Q)| < /1802 10g4 ( 1 ) 0,t > d/2, etc. onR?. See Wendland [21] for more
\/— Vvn examples.

+2R, (F; {Xi(l)}) + 2R, (F; {Xi(2 }). (6) The results derived in this section show that the estimators
of the Wasserstein distance, Dudley metric and MMD exhibit
good convergence behavior, irrespective of the distrilng;
unlike estimators of the-divergence [3], [5].

Theorem 7 holds for ang for which v is finite. However, to
obtain the rate of convergence fo5(P,,, Q,,), one requires
an estimate ofR,,(J; {Xf”};’;l) and R, (F; {Xi(z)}?zl).

Note that if R,,(5; {Xi(l)};ll) P 0 asm — oo and IV. NON-PARAMETRIC ESTIMATION OF TOTAL VARIATION

Ro(F:{XP)n ) % 0 asn — oo, then [yg (P, Qn) — (DISTANCE

(P, Q)| PQ g asmon — oo Also note that if So far, the results in Sections Il and Il show that the
15 C;" X Wym - 07 q : g xn _ estimators of IPMs (specificallyy’, 3 and ;) exhibit nice
gm(( ’){ thzén}firzlr1)1 ((5| [&grmg@a)n R&E @ﬂ i O}l () —  properties compared to those @fdivergences. As shown in
Q\"™n ) YF(Lm, Un YF = UpQ

TmV Section I, since the total variation distance,
m~Y/24r,vn~1/2), wherea V b := max(a, b). The following

corollary to Theorem 7 provides the rate of convergence for 7y (p Q) := sup {/ FAP—Q): || f]lso < 1} 7
W, B and ;. M N

Corollary 8 (Rates of convergence foF, 8 and;): is both an IPM and ap-divergence, we consider here its
() Let M be a bounded subset ¢R?, || - ||,) for some empirical estimation and investigate consistency. Suppds
1 < s < oo. Then|W(P,,,Q,)—W(P,Q)| = Op o(rm+7,) IS a metric space. L&'V (P,,,Q,) be an empirical estimator
and|B(P,,, Q,) — B(P, Q)| = Op o(rm + ), Where of TV (P,Q), which can be shown to be

1/210g m, d=1
Tm = { mfl/(dJrl)’ d>?2 : TV ]P)maQn ZY&Z,
In addition if M is a bounded, convex subset @40 - ) where{a*}¥ , solve the linear program:
with non-empty interior, then N
m_1/27 d=1 max Z }N/Z-ai
rm =< m~/2logm, d=2 e j
*1/d d>2 s.t. —1§ai < 1,Vi.

(||) [13 Theorem 4] LetM be a measurable space. Suppos-gqe questlon is whether this estimator is consistent. Rigt
k is measurable andup,.,, k(r,z) < C' < oco. Then, thata; = signy;) and thereforeT'V(P,,, Q,) = 2 for any
7k (Prn, @) =71 (P, Q)| = Op g(m~1/24+n~1/2). In addition, 7. ThIS means for anyP, Q such tr_\atTV(]P’ Q) <
Vi (Prns Q) — (P, Q)| %% 0 asm,n — oo, ie., the TV(]P’m,Qn) is not a consistent estimator dI’V(]P’,Q).
estimator of MMD is strongly consistent. Indeeda;, Vi are indepedent of the actual sample,;} ¥,
! . S drawn fromP andQ, unlike in the estimation of the Wasser-
Proof: The proof involves the estimation of_ " : o -
Rn(FAXDY) and Ry(F:{XP}) for § = Fu, ¥y stein and Dudley metrics, and therefore it is not surprisireg
and %, which is then used in (6). For details, see [1 V(Pm, Qo) is not a consistent estimator &1 (P, Q).
Corollg,r 12] : K = ' SupposeM = R? and letP, Q be absolutely continuous
y ' w.r.t. the Lebesgue measure. Th&W (P, Q) can be consis-
Several observations follow Corollary 8: tently estimated in a strong sense using the total variation
(@) The rate of convergence &V and 8 is dependent on distance between the kernel density estimator® aind Q.
the dimensiond, which means that in large dimensionsThis is because |11P>m and Qn represent the kernel den-
more samples are needed to obtain useful estimatessity estimators associated with and Q respectively, then
W andg. Also note that the rates are independent of tH&'V (P,,,, Q,) — TV (P,Q)| < TV (P,,,P) + TV (Q,, Q) +
metric, || - ||s, 1 < s < oo. 0 asm,n — oo (see [22, Chapter 6] and references therein).
(b) When M is a bounded, convex subset @<, || - ||), The issue in the estimation &FV(P,Q) is that the set
faster rates are obtained than for the case whidrés Fry :={f : | flleo < 1} is too large to obtain meaningful re-
just a bounded (but not convex) subset(Bf, || - ||,). sults if no assumptions on distributions are made. On theroth
(c) Inthe case of MMD, we have not made any assumptiohand, one can choose a more manageable sUbsdtF
on M except that it be a measurable space. This measich thatys (P,Q) < TV(P,Q), VP, Q and vy (P, Q,,) is
in the case ofR?, the rate is independent df which is a consistent estimator of+(P, Q). Possible choices foff
a very useful property. The condition of the kernel beingnclude 35 and {1 (_ 4 : t € R?}, where the former yields
bounded is satisfied by numerous kernels, including thiee Dudley metric while the latter results in the Kolmogorov



distance. The empirical estimator of the Dudley metric amtbne while B. K. S. was an intern at the MPI. A. G. was
its consistency have been presented in Sections Il andhB. Tsupported by DARPA IPTO FA8750-09-1-0141, ONR MURI
empirical estimator of the Kolmogorov distance betw®end NO000140710747, NSF NeTS-NOSS CNS-0625518 and the
Q is well studied and is strongly consistent, which simplyST Program of the EC, under the FP7 Network of Excellence,

follows from the Glivenko-Cantelli theorem [23, TheoremiCT-216886-NOE.

12.4].
Since the total variation distance betwdrand Q cannot
be estimated consistently for dfl, Q, in the following, we [
present two lower bounds ¢V, one involvingi? and 8 and
the other involvingy, which can be estimated consistently. [2]

Theorem 9 (Lower bounds dhV): (i) For all P # Q,

we have [3]
W(P,Q)B(P,Q)
VEO2gro -y 0 " ow
(i) Supposel := sup,,s k(z, ) < co. Then
(5]
P, Q)
v, Q) > Q. ®8)
Ve (6]

Based on the above result, the following observations can be
made: [7]

(@) A simple lower bound onl'V can be obtained as [8]

TV (P,Q) > 5(P,Q), VP, Q. It is easy to see that the

bound in (7) is tighter ag% > B(P,Q) with  [g]

equality if and only ifP =

(b) The bounds in (7) and (8) translate as lower boun&d!
on the KL-divergence through Pinsker's inequality:
TV?(P,Q) < 2KL(P,Q), VP,Q. See Fedotowt al. [11]
[19] and references therein for more refined bounds
relatingT’V and K L. Therefore, using these bounds, ong2]
can obtain a consistent estimate of a lower bound ®h
and K L.

V. CONCLUSION& DISCUSSION

In this work, we have studied the non-parametric estimatid!
of integral probability metrics and showed that the empiric;5;
estimators of the Wasserstein distandé)( Dudley metric 3)
and maximum mean discrepancy;) are simple to compute,
strongly consistent and have a good convergence behavjgg
compared to those af-divergences. In addition, we provided
two lower bounds on the total variation distance in terms
of these IPMs, which then translate to lower bounds qfy
KL-divergence through Pinsker’s inequality. Our expenitad
results [18] demonstrate the practical viability of thesti-e [18]
mators, which are not reported here due to space limitations

One interesting problem yet to be explored in connectigie]
with this work is: What is the minimax rate for estimatikig,

B and~, and do the proposed estimators achieve this rategg,
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