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Probability Metrics

Setup:

M : measurable space.

P : set of all Borel probability measures defined on M.

To do:

Define a metric, γ on P.

γ is called the probability metric.

Popular examples:

Kullback-Leibler divergence

Jensen-Shannon divergence

Total-variation distance (metric)

Hellinger distance

χ2-distance

The above examples are special instances of Csiszár’s f-divergence.
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Applications

Two-sample problem:

Given random samples {X1, . . . ,Xm} and {Y1, . . . ,Yn} drawn i.i.d. from P
and Q, respectively.

Determine: are P and Q different?

γ(P,Q) : distance metric between P and Q.

H0 : P = Q H0 : γ(P,Q) = 0
≡

H1 : P 6= Q H1 : γ(P,Q) > 0

Test statistic: γ(., .)

Other applications: Hypothesis testing (independence tests, goodness-of-fit tests),
Central limit theorems, Density estimation, Markov chain Monte Carlo etc.
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Maximum Mean Discrepancy

Let (M, ρ) be a metric space. The maximum mean discrepancy (MMD) between
P,Q ∈ P is defined as

γF (P,Q) = sup
f ∈F

∣

∣

∣

∣

∫

M

f dP −

∫

M

f dQ

∣

∣

∣

∣

, (1)

where F = {f : M → R|f ∈ ∩P∈PL1(M,P)}.

γF is also called the integral probability metric [Müller, 1997].

Motivated from the notion of weak convergence of probability measures on
metric spaces.

γF is a pseudo-metric on P, i.e., γF (P,Q) = 0 ; P = Q. F determines the
metric property of γF .
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Examples

γF is a metric on P for

F = Cb(M) : definition of weak convergence.

F = Cbu(M) : by the Portmanteau theorem.

F = {f : ‖f ‖∞ ≤ 1} : total variation distance.

F = {f : ‖f ‖L ≤ 1} : Monge-Wasserstein/Rubinstein-Kantorovich metric.

F = {f : ‖f ‖∞ + ‖f ‖L ≤ 1} : Dudley metric.

F = {1(−∞,t] : t ∈ Rd} : Kolmogorov distance.

F = {e i〈ω,.〉 : ω ∈ Rd} : maximal difference between the characteristic
functions of P and Q.
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What if F is an RKHS?

Set up: [Gretton et al., 2007]

H : reproducing kernel Hilbert space (RKHS).

k : reproducing kernel; k : M × M → R.

F : a unit ball in H, i.e., F = {f : ‖f ‖H ≤ 1}.

Theorem

Let

F = {f : ‖f ‖H ≤ 1} ⊂ (H, k) defined on a measurable space M.

k is measurable and bounded.

Then

γF (P,Q) = sup
f ∈F

∣

∣

∣

∣

∫

M

f dP −

∫

M

f dQ

∣

∣

∣

∣

=
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∥

∥

∥

∫

M

k dP −

∫

M

k dQ

∥

∥

∥

∥

H

, (2)

where ‖.‖H represents the RKHS norm.
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Why RKHS?

Given P and Q, computing γ(P,Q) is not straightforward when
F = Cb(M), Cbu(M), {‖f ‖L ≤ 1}, {‖f ‖L + ‖f ‖∞ ≤ 1}.

When F = {f : ‖f ‖H ≤ 1}, then γ(P,Q) is entirely determined by the
kernel, k.

k is measurable and bounded: γ(P̂, Q̂) is a
√

mn/(m + n)-consistent
estimator of γ(P,Q) [Gretton et al., 2007].

M = Rd and k is translation-invariant: the rate is independent of d .

Easy to handle structured domains like graphs and strings.
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RKHS Embedding

P ∈ P is embedded as
∫

M
k dP ∈ H,

Π : P → H, P 7→

∫

M

k dP. (3)

Example: P = δx (Dirac measure at x ∈ M) 7→ k(., x) (kernel function at x).

Question: When is Π injective? In other words, when is γF a metric?

For what k, γF (P,Q) = 0 ⇒ P = Q?

By choosing the right RKHS, P and Q can be distinguished by their mean
elements in H.
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Characteristic Kernel

Definition

k is characteristic to a set D ⊂ P of probability measures defined on M if

γF (P,Q) = 0 ⇔ P = Q for P,Q ∈ D (4)

.

Example

Let M = Rd and k(ω, x) = e iωT x .

Π[P] =

∫

M

k dP =

∫

Rd

e i〈.,x〉 dP. (5)

The notion of characteristic kernel is a generalization of the characteristic function.
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Sufficient Conditions

Let M be compact. If H is dense in Cb(M) w.r.t. the L∞ norm (i.e. k is
universal [Steinwart, 2002]), then k is characteristic to
P. [Gretton et al., 2007].

Gaussian and Laplacian kernels on any compact subset of Rd .

If H + R is dense in Lq(M), q ≥ 1, then k is characteristic to
P [Fukumizu et al., 2008].

More general condition than universality.

Gaussian and Laplacian kernels on the entire Rd .

Issues:

Difficult to check the conditions.

Universality is an overly restrictive assumption.
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Background & Notation

Assumption

M = Rd . k(x , y) = ψ(x − y) where ψ is a bounded continuous real-valued

positive definite function on Rd .

Theorem (Bochner)

ψ is positive definite if and only if it is the Fourier transform of a finite

nonnegative Borel measure, Λ on Rd , i.e.,

ψ(x) =

∫

Rd

e−ixT
ω dΛ(ω), ∀ x ∈ Rd . (6)

Characteristic function: φP(ω) =
∫

Rd e iωT x dP(x), ∀ω ∈ Rd .

If ψ ∈ L1(Rd), then dΛ = 1
(2π)d/2 Ψ dω.
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Main Result

Theorem

Let

F = {f : ‖f ‖H ≤ 1} ⊂ (H, k).

k(x , y) = ψ(x − y), x , y ∈ Rd ; bounded and continuous.

Then, k is characteristic to P ⇔ supp(Λ) = Rd .

If k is such that supp(Λ) = Rd , then ∄ P 6= Q such that γF (P,Q) = 0.

Can we have k with supp(Λ) 6= Rd such that γF (P,Q) = 0 ⇒ P = Q? The
theorem says NO.

Complete characterization of translation-invariant kernels in Rd .

Examples: Gaussian, Laplacian, B2n+1-splines, Matérn class etc.
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Characteristic kernel: Examples

Gaussian kernel: ψ(x) = e−x2/2σ2

; Ψ(ω) = σe−σ2ω2/2.

−4 −3 −2 −1 0 1 2 3 4
0

1

x

ψ
(x

)

−4 −3 −2 −1 0 1 2 3 4
0

σ

Ψ
(ω

)

Laplacian kernel: ψ(x) = e−σ|x|; Ψ(ω) =
√

2
π

σ
σ2+ω2 .

−4 −3 −2 −1 0 1 2 3 4
0

1

x

ψ
(x

)

−4 −3 −2 −1 0 1 2 3 4
0

(2/πσ2)1/2

Ψ
(ω

)
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Characteristic kernel: Examples

B1-spline kernel: ψ(x) = (1 − |x |)1[−1,1](x); Ψ(ω) = 2
√

2√
π

sin2( ω
2

)

ω2 .

−3 −2 −1 0 1 2 3
0

1

x

ψ
(x

)

0

0.2

0.4

0.6

0.8

1

−8π −6π −4π −2π 0 2π 4π 6π 8π

(2
π)

1/
2 Ψ

(ω
)

Ψ(ω) = 0 at ω = 2lπ, l ∈ Z; supp(Ψ) = R.
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Non-characteristic kernel: Examples

Sinc kernel: ψ(x) = sin(σx)
x

; Ψ(ω) =
√

π
2
1[−σ,σ](ω).

−0.2

0

0.2

0.4

0.6

0.8

1

−6π −5π −4π −3π −2π −π 0 π 2π 3π 4π 5π 6π

ψ
(x

)

Ψ
(ω

)

−3 −2 −1 0 1 2 3
0

(π/2)1/2

Poisson kernel: ψ(x) = 1−σ2

σ2−2σ cos(x)+1
; Ψ(ω) =

√
2π

∑∞
j=−∞ σ|j|δ(ω − j).

−4π −3π −2π −π 0 π 2π 3π 4π
0

(1−σ2)/(1+σ)2

(1−σ2)/(1−σ)2

ψ
(x

)

−8 −6 −4 −2 0 2 4 6 8
0

σ

1

(2
π)

−
1/

2 Ψ
(ω

)

Periodic kernels on Rd are not characteristic to P.
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Non-characteristic kernel: Examples

Cosine kernel: ψ(x) = cos(σx); Ψ(ω) =
√

π
2
[δ(ω − σ) + δ(ω + σ)].

−1

0

1

ψ
(x

)

−3π −2π −π 0 π 2π 3π −4 −3 −2 −1 0 1 2 3 4
0

0.5

ω

(2
π)

−
1/

2 Ψ
(ω

)

Dirichlet kernel: ψ(x) = sin(nx+0.5x)
sin(0.5x)

; Ψ(ω) =
√

2π
∑n

j=−n δ(ω − j).

−3π −2π −π 0 π 2π 3π

−2

0

9

ψ
(x

)

−8 −6 −4 −2 0 2 4 6 8
0

1

ω

Ψ
(ω

)
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Fourier Representation of MMD

Lemma

Let

F = {f : ‖f ‖H ≤ 1} ⊂ (H, k).

k(x , y) = ψ(x − y), x , y ∈ Rd ; bounded and continuous.

φP, φQ : characteristic functions of P and Q.
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φPΛ
]
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φP, φQ : characteristic functions of P and Q.

Then
∫

Rd

k(., x) dP(x) = F
−1

[

φPΛ
]

, (7)

and

γF (P,Q) =
∥

∥F
−1[(φP − φQ)Λ]

∥

∥

H
, (8)

where − represents complex conjugation, F−1 represents the inverse Fourier

transform.
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Proof

Sufficiency: Assume ψ ∈ L1(Rd).

Λ is absolutely continuous w.r.t. the Lebesgue measure and has density, Ψ.

F [ψ] = Ψ

γF (P,Q) = 0 ⇒ (φP − φQ)Ψ = 0.

If supp(Λ) = Rd , then Ψ(ω) > 0 a.e. ⇒ φP = φQ a.e. ⇒ P = Q.

ψ /∈ L1(Rd) can be addressed using distribution theory.

Necessity:

We need to show that k is characteristic ⇒ supp(Λ) = Rd .

Equivalent to showing that supp(Λ) ( Rd ⇒ k is not characteristic.

We show that for any k with supp(Λ) ( Rd , ∃P 6= Q such that
γF (P,Q) = 0.
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Proof Idea: Necessity

Lemma

Let

F = {f : ‖f ‖H ≤ 1} ⊂ (H, k).

k(x , y) = ψ(x − y), x , y ∈ Rd ; bounded and continuous.

D = {P : φP ∈ L1(Rd) ∪ L2(Rd)} ⊂ P.

Then for any Q ∈ D, ∃P 6= Q, P ∈ D given by

p = q + F
−1[θ] (9)

such that γF (P,Q) = 0 if and only if ∃ θ : Rd → C, θ 6= 0 that satisfies:

(i) θ ∈ (L1(Rd) ∪ L2(Rd )) ∩ Cb(Rd) is conjugate symmetric,

(ii) F−1[θ] ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)),

(iii) θΛ = 0,

(iv) θ(0) = 0,

(v) infx∈Rd{F−1[θ](x) + q(x)} ≥ 0.

Bharath K. Sriperumbudur (UCSD) Probability Metrics COLT 2008 19 / 29



Proof Idea: Necessity

Lemma

Let

F = {f : ‖f ‖H ≤ 1} ⊂ (H, k).

k(x , y) = ψ(x − y), x , y ∈ Rd ; bounded and continuous.

D = {P : φP ∈ L1(Rd) ∪ L2(Rd)} ⊂ P.

Then for any Q ∈ D, ∃P 6= Q, P ∈ D given by

p = q + F
−1[θ] (9)

such that γF (P,Q) = 0 if and only if ∃ θ : Rd → C, θ 6= 0 that satisfies:

(i) θ ∈ (L1(Rd) ∪ L2(Rd )) ∩ Cb(Rd) is conjugate symmetric,

(ii) F−1[θ] ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)),

(iii) θΛ = 0,

(iv) θ(0) = 0,

(v) infx∈Rd{F−1[θ](x) + q(x)} ≥ 0.

Bharath K. Sriperumbudur (UCSD) Probability Metrics COLT 2008 19 / 29



Proof Idea: Necessity

Lemma

Let

F = {f : ‖f ‖H ≤ 1} ⊂ (H, k).

k(x , y) = ψ(x − y), x , y ∈ Rd ; bounded and continuous.

D = {P : φP ∈ L1(Rd) ∪ L2(Rd)} ⊂ P.

Then for any Q ∈ D, ∃P 6= Q, P ∈ D given by

p = q + F
−1[θ] (9)

such that γF (P,Q) = 0 if and only if ∃ θ : Rd → C, θ 6= 0 that satisfies:

(i) θ ∈ (L1(Rd) ∪ L2(Rd )) ∩ Cb(Rd) is conjugate symmetric,

(ii) F−1[θ] ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)),

(iii) θΛ = 0,

(iv) θ(0) = 0,

(v) infx∈Rd{F−1[θ](x) + q(x)} ≥ 0.

Bharath K. Sriperumbudur (UCSD) Probability Metrics COLT 2008 19 / 29



Proof Idea of Necessity: Example

ψ(x) =
√

2
π

sin(2πx)
x

; Ψ(ω) = 1[−2π,2π](ω).
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Example : cntd.

q(x) = 1
π(1+x2)

; φQ(ω) = 1√
2π

e−|ω|.

q(
x)

−5 5
0

1/π

−5 0 5
0

1/π

φ Q
(ω

)

−5 0 5
0

(1/2π)1/2

p(x) = q(x) + F
−1[θ](x); φP(ω) = φQ(ω) + θ(ω).
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Useful Result

Corollary

Let

F = {f : ‖f ‖H ≤ 1} ⊂ (H, k)

k(x , y) = ψ(x − y), x , y ∈ Rd ; bounded and continuous.

supp(ψ) is compact.

Then k is characteristic to P.

All compactly supported continuous kernels are characteristic to P.

Computationally advantageous in practice.

So far, supp(Λ) = Rd ⇔ k is characteristic to P.

Can k with supp(Λ) ( Rd be characteristic to some D ( P?
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Summing Up

Σ := supp(Λ)
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Dissimilar Distributions with Small MMD : Example

Question: How good is the “characteristic property” in the finite sample setting?
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p(x) = q(x) + αq(x) sin(νπx). (10)
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Example : cntd.

γF (P̂, Q̂) vs. ν:

−8 −6 −4 −2 0 2 4 6 8
10

−4

10
−3

10
−2

10
−1

ν

γ2 F
,u
(m

,m
)

 

 

Uniform
Gaussian

B1-spline

−8 −6 −4 −2 0 2 4 6 8
0.05

0.1

0.15

0.2

0.25

0.3

ν
γ2 F

,u
(m

,m
)

 

 

Uniform
Gaussian

Gaussian

Large ν: γF (P̂, Q̂) becomes indistinguishable from zero though γF (P,Q) > 0.
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Summary

Maximum mean discrepancy, γF (P,Q) = supf ∈F

∣

∣

∫

M
f dP −

∫

M
f dQ

∣

∣.

When F is a unit ball in an RKHS (H, k), then γF is entirely determined by
k.

When M = Rd , γF is a metric on P if and only if the Fourier spectrum of a
translation-invariant kernel has the entire domain as its support.

In the finite sample setting, characteristic kernels may have difficulty in
distinguishing certain distributions.
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Extensions & Open Questions

Extensions:

M is a compact subset of Rd but with periodic boundary conditions, e.g.
Torus, Td .

M: locally compact Abelian group, compact non-abelian group, semigroup.

Relation of RKHS based γF to probability metrics induced by other F .

Role of the speed of decay of the spectrum of k on γF .

Dependence of γF on the kernel parameter.
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Thank You
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